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Preferred conformations of amino acid side chains have been well established through statistically obtained
rotamer libraries. Typically, these provide bond torsion angles allowing a side chain to be traced atom by
atom. In cases where it is desirable to reduce the complexity of a protein representation or prediction, fixing
all side-chain atoms may prove unwieldy. Therefore, we introduce a general parametrization to allow positions
of representative atoms (in the present study, these are terminal atoms) to be predicted directly given backbone
atom coordinates. Using a large, culled data set of amino acid residues from high-resolution protein crystal
structures, anywhere from 1 to 7 preferred conformations were observed for each terminal atom of the
non-glycine residues. Side-chain length from the backbone CR is one of the parameters determined for each
conformation, which should itself be useful. Prediction of terminal atoms was then carried out for a second,
nonredundant set of protein structures to validate the data set. Using four simple probabilistic approaches,
the Monte Carlo style prediction of terminal atom locations given only backbone coordinates produced an
average root mean-square deviation (RMSD) of∼3 Å from the experimentally determined terminal atom
positions. With prediction using conditional probabilities based on the side-chainø1 rotamer, this average
RMSD was improved to 1.74 Å. The observed terminal atom conformations therefore provide reasonable
and potentially highly accurate representations of side-chain conformation, offering a viable alternative to
existing all-atom rotamers for any case where reduction in protein model complexity, or in the amount of
data to be handled, is desired. One application of this representation with strong potential is the prediction
of charge density in proteins. This would likely be especially valuable on protein surfaces, where side chains
are much less likely to be fixed in single rotamers. Prediction of ensembles of structures provides a method
to determine the probability density of charge and atom location; such a prediction is demonstrated graphically.

INTRODUCTION

Many biophysical techniques are not suitable for routine
atomic level determination of protein structure. Such methods
are often more suited to proteins or supramolecular com-
plexes which cannot be determined to high-resolution. For
example, a feature such as topography in a scanning probe
microscopy image may be correlated to protein sequence
without the determination of an entire structure.2 For many
investigations into protein structure and function, the predic-
tion or experimental determination of the precise positions
of all atoms in amino acid side chains is unnecessary or
unwieldy, if even possible. From a physicochemical perspec-
tive, only two properties of side chains need to be repre-
sented: chemical character (i.e., charge, dipole, aromaticity,
aliphaticity) and extent of steric bulk. To allow the efficient
and accurate reduced representation of amino acid side
chains, we employ the statistical principles employed in
rotamer library compilation to produce a new set of

parameters allowing both reduced representation and predic-
tion of amino acid conformations. The applicability of this
representation is demonstrated through a Monte Carlo styled
prediction of side-chain positions in a large set of known
protein structures.

Reduced, or minimal, modeling of proteins is by no means
a new concept. Various representations have been developed
over the past 3 decades or so. In the most minimal case, the
entire protein may be represented in a schematic manner such
as an ellipsoid.3,4 Beyond a simple ellipsoidal representation,
surface features, or patches, may be taken into account to
better represent chemical heterogeneity and predict potential
interactions.5 This style of minimal model is most effective
if a tertiary structure is already known. For protein folding
simulations, reduced models typically consist either of a
polymer physics style approximation6 or of an approximated
backbone along with side chains represented by their centroid
following the initial work of Levitt and Warshel.7-10 Other
approaches include the following: multiple virtual atoms11-13

or centroids;14 single, mobile bead representations;15 and,
multiple spheres with defined chemical characteristics.16,17

Dihedral angle preferences for both the backbone and side-
chain atoms, following from Ramachandran and co-work-
ers,18,19have been calculated, experimentally measured, and
extensively tabulated. Side-chain dihedral angle preferences
are now typically classed into specific clusters, termed
rotamers, following the 1987 work of Ponder and Richards.20

Several rotamer libraries have been compiled since this
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original work,21,22 with various characteristics of rotamer
preference taken under consideration. While rotamer libraries
have proven highly useful for such applications as X-ray and
NMR structure validation,23,24 homology modeling,25,26 and
protein design and engineering,27 determination of the entire
side-chain structure must typically be carried out.

Given the existence of distinct rotamer conformations, we
would like to bypass the intermediate atoms of a side chain
and predict the location of the terminal atoms purely based
upon the backbone, providing both surface topography and
chemical functionality. This approach is most akin to the
coarse-grained representation introduced by Keskin and
Bahar,13 where side-chain virtual bonds and atoms were
determined by statistical fitting of a data set comprised of
302 proteins. We believe that there is a great deal of value
to be gained by predicting terminal atoms instead of more
nebulous centroidal, or virtual atom, positions closer to the
backbone. Since terminal atoms locate the end of the side
chain, a definite steric boundary is provided, despite the
drastic reduction in atoms required. Furthermore, side-chain
chemistry tends to take place at or near the terminal (as
extensively covered in ref 28), making these atoms often of
crucial importance in reactions or protein-protein interac-
tions. It should be noted that many previous reduced
representations are rather difficult to adapt to more general
use, often requiring a great deal of mathematical expertise,
or having been designed with a very specific application in
mind. It is our goal to make the generally applicable
statistical representations herein also readily accessible. While
we have focused on terminal atoms, the framework and
methods we have developed are equally well suited to
determination and parametrization of any side-chain atom.

Common methodology for rotamer library preparation is
to select a culled set of high-resolution protein structures
from the PDB (Protein Data Bank29,30 http://www.rcsb.org/
pdb). Since the work of Ponder and Richards, culling has
been based on a cutoff for acceptable structure resolution
(e.g. only structures below 1.7-2.0 Å) and maximum
allowable sequence identity (e.g. no more than 25-50%
identity) within the library. The rapid growth in the number
of structures deposited within the PDB has led to notable
increases in rotamer library resolution (e.g. refs 21, 31, and
32) and the introduction of less frequently observed rotamers.
With such large numbers of high-resolution crystallographic
examples of each type of amino acid now available, culling
may be carried out with great zeal without sacrificing
statistically devastating numbers of samples. In the recent
library of Lovell et al.,31 the traditional culling techniques
were expanded upon. The veracity of the reported coordinates
for each residue were taken into account, as initially detailed
by Word et al.33 Namely, those residues with high-temper-
ature factors, alternate structures, overlapping van der Waals
radii, or at the N- or C-termini were not included within the
library. We have followed this improvement in culling
procedures in order to produce our library of parameters for
reduced residue representation.

One potential weakness of reliance on all-atom rotamer
libraries and methodology is the manner in which side chains
are typically fixed in a single rotameric conformation. On a
protein surface, there is no reason to expect that a side chain
will assume a single conformation; rather, it should statisti-
cally sample all favorable rotamer states with probabilities

influenced by neighboring residues and by intermolecular
interactions with binding partners, solvent, or ions. This
dichotomy between rotameric flexibility and rigidity is
demonstrated very clearly by Daley and Sykes.34 The ability
to efficiently carry out rigorous probabilistically based
prediction of topology and surface charge density is likely
one of the most appealing features of the reduced representa-
tion parameters introduced herein. A Monte Carlo style
prediction is used to demonstrate this capability.

We feel that a set of parameters combining both the
chemical and conformational nature of the side chain while
minimizing the amount of information to be manipulated will
prove extremely useful for modeling and representation as
well as for computational and experimental investigations
of protein structures and interactions. Extensive optimized
prediction methods are not developed herein; instead, predic-
tion of side chains is carried out in a rudimentary, randomized
manner in order to validate the parameter set. The goal in
the present work is to provide these parameters and to
demonstrate their effectiveness in representing terminal atom
location.

METHODS

I. Extraction of Conformational Parameters. Definition
of Side-Chain Parameters.Considering any amino acid, a
minimum set of necessary parameters required to describe
its side chain would be the location and type of its terminal
atom or atoms, denotedAT. The atoms we have examined
are listed in Table 1. As with any general coordinate in three-
dimensions, three parameters must be provided in order to
fix AT in space. The three parameters we have chosen are
illustrated in Figure 1: the distance from CR to AT, r(CR f
AT), and two angles relative to the plane containing N, CR,
and C′ for the residue in question: the angle from the plane
to the vector CR f AT, úabove, and the angle from the
projection of this vector onto the plane to the vector CR f
N, úin. A more “minimal” definition of a plane, requiring
definition only of the CR backbone, for residue number n
could be envisioned as that containing CR(n - 1), CR(n),
and CR(n + 1). For the present, however, we will discuss
only the first of these plane definitions.

The sign convention we have chosen for these angles is
based upon the stereochemistry of anL-amino acid. The cross
product between the vectors CR f N and CR f C′ produces
a vector lying in the direction of the Câ of anL-amino acid.
We have chosen a positiveúaboveto mean thatAT lies on the
same side of the plane as Câ. If the plane containing N, CR,
and C′ is halved along vector CR f N, the projection of Câ

falls in the half of the plane opposite that containing C′. We
have defined aúin of less than 180° to fall in the half-plane
not containing C′si.e. a clockwise rotation ofúin away from
vector CR f N in the plane will reach the projection of CR

f AT. These angular definition conventions are illustrated
in Figure 2.

Selection, Parsing, and Culling of PDB Entries.A culled
set of polypeptide chains from PDB entry files at a resolu-
tion of 1.8 Å or better and a maximum of 40% pairwise
sequence identity was selected from the Oct 4, 2001 revision
of the CulledPDB compiled by R. L. Dunbrack (http://
www.fccc.edu/research/labs/dunbrack/pisces) based on the
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methodology developed by Hobohm, Sander, and co-
workers.36,37This provided an initial data set of 792 polypep-
tide chains from 749 PDB entries with a total of 183 206
residues. The complete list of polypeptide chains employed,
including the number of residues in the chain and resolution
of the structure, is supplied in the Supporting Information.

Prior to usage, each PDB file was analyzed by DSSP35

and PROCHECK.38 All parsing, culling, and processing of
PDB, DSSP, and PROCHECK derived data was carried out

using IDL 5.5 (Interactive Data Language, Research Systems,
Inc., Boulder, CO) on an SGI Octane (Mountain View, CA)
workstation. Source code is freely available upon request.
The PROCHECK modified PDB entry files containing the
IUPAC-IUP Commission preferred atom labels, as recently
clarified by Markley et al.,39 were then parsed for the
following data concerning each residue: PDB entry code
and chain; Cartesian coordinates for all backbone atoms and
side-chain atoms of interest; the maximum B-factor of all
non-H atoms; the presence of any atoms with occupancy less
than 1.0; the existence of alternate specified conformations;
and, N- or C-terminal character. The corresponding DSSP
output files were parsed to obtain each residue’s accessible
surface area (ASA; as defined by Lee and Richards40) and,
where applicable, to differentiate between cysteine and
cystine residues. Parsing of PROCHECK output files pro-
vided the secondary structure assignment (expanded due to
relaxed constraints over the DSSP derived assignment) and
the region of the Ramachandran plot following the clas-
sification of Morris et al.41 Exact backbone (φ, ψ, andω for
both N- and C-terminal directions) and side-chain (ø1)
dihedral angles were also calculated for each residue. Culling
beyond the initial selection of the PDB chains employed was
then carried out residue-by-residue. Any residues with an
incomplete set of defined non-H atoms or with extra atoms
due to co- or posttranslational modification (such modified
residues are either flagged by a MODRES field or contain
an extra non-H atom in the ATOM fields) were removed in
order to prevent skewing of the statistics by such nonstandard
conformations. Residues at the C- or N-terminal of a chain
were also discounted, since these are likely not representative
of the standard mid-peptide conformation.

Following the work of the J. and D. Richardson group,31,33

three further culling parameters were employed. Any residue
with an atom with reported occupancy less than 1.0 was
removed; any residue with more than one reported set of
coordinates (i.e. with alternate structures provided) was
removed; and, any residue with an atom with a large (>40)
temperature factor (B) or with an unspecified (0.0) temper-
ature factor was disqualified. Note that any residue with the
mean-square displacement of the atom (〈u2〉) specified instead
of B in the B-factor column of the PDB entry was first
converted using B) 8π2〈u2〉, which assumes an isotropic
and harmonic vibration of the atom within the crystal
lattice.42 Each of these three culling factors was shown by
to be effective in reducing the number of residues involved
in a steric clash.33 Any such clashing residues are probably
misreported or poorly determined in the initial protein
structure.

Table 1. Side-Chain Atoms (Non-Hydrogen) Used as
RepresentativeAT for Each Amino Acid Residuec

in culled data set:
number of

side-chain atoms

residue number percent total retained
AT atoms
retained

Gly 13699 8.88 0 0
Ala 15245 9.85 1 1 Câ

Proa 7387 4.77 3 1 Cγ

Pro (NTcis)a 396 0.26 3 1 Cγ

Cysb 1539 0.99 2 1 Sγ

Cystineb 933 0.60 2 1 Sγ

Ser 9109 5.88 2 1 Oγ

Thr 9692 6.26 3 2 Oγ1, Cγ2

Val 12048 7.78 3 2 Cγ1, Cγ2

Asn 7041 4.55 4 2 Oδ1, Nδ2

Asp 8732 5.64 4 2 Oδ1, Oδ2

Ile 9058 5.85 4 1 Cδ1

Leu 14246 9.20 4 2 Cδ1, Cδ2

Gln 4924 3.18 5 2 Oε1, Nε2

Glu 6910 4.46 5 2 Oε1, Oε2

Met 2998 1.94 4 1 Cε

Arg 5846 3.78 7 2 Nη1, Nη2

Lys 6153 3.98 5 1 Nú

His 3643 2.35 6 2 Nδ1, Nε2

Phe 6681 4.32 7 1 Cú

Trp 2533 1.64 10 2 Nε1, Cη1

Tyr 5931 3.83 8 1 Oη

a Pro have trans (|ω| > 135°) peptide bonds at N- and C-terminal;
Pro (NT cis) have cis (|ω| < 45°) peptide bond at N-terminal but trans
peptide bond at C-terminal.b Cys are free cysteine and cystine are cross-
linked residues as determined by DSSP.35 c The four backbone atoms
(N, CR, C′, and O) are included in the data set, although O is not needed
for the backbone dependent parametrization developed. The numbers
of each residue are retained, and the percentage of the total in the culled
data set of 154 736 residues are also given. Residues are grouped by
the length/complexity of the side chain up to those terminating at an
ε-substituent and by the primary chemical character for aromatic and
basic residues.

Figure 1. Definition of parameters determined for residue number
n, whereAT represents an atom of interest in its side chain.

Figure 2. Conventions employed in definition of (A)úabove and
(B) úin. Note thatn is given by the cross-product (CR f N) × (CR

f C′).
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A final culling factor was implemented: any nonproline
residue with a cisω-dihedral angle was excluded. While cis
peptide bonds are becoming more acceptable in protein
structures (recently reviewed in ref 21), the more prevalent
trans conformation was deemed most relevant for our
statistical analysis. In the case of proline residues, cis peptide
bonded residues were considered as a separate data set from
the trans peptide bonded residues. Our data set of culled
proline residues contains 5.05% cis peptide bonds, which is
on the lower end of the 5.0-6.5% range reported in previous
studies.21,43This value is 2 orders of magnitude greater than
the 0.047% occurrence of cis peptide bonds in the culled
nonproline residues after all other filters have been applied,
which is near the upper end of the 0.03-0.05% occurrence
rates shown in the past.21

In combination, the seven culling procedures beyond initial
chain selection provided a final data set of 154736 residues.
(Data concerning the number of residues flagged for culling
by each culling procedure are provided in the Supporting
Information.) This represents a culling rate of 15.5%.
Interestingly,∼36% of the residues culled were flagged for
removal by more than one of these parameters. The number
of each residue retained and its percentage composition
within the total culled data set is provided in Table 1.

Calculation of AT Conformational Parameters.Calcula-
tion of the three parameters forAT illustrated in Figure 1
was performed as follows. Note that vectors between two
atoms A1 and A2 are written as (A1 f A2) during the
subsequent discussion. The distance r(CR f AT) is simply
the norm of the vector CR f AT:

To calculate the anglesúaboveandúin for each residue, all
coordinates for that residue were first normalized to an origin
centered at CR. The equation of the plane containing N, CR,
and C′, in form Ax + By + Cz ) 0, is given by

where the cross-product provides the normal to the plane,
n, and the components ofn are nx ) A; ny ) B; and,
nz ) C.

The location of Pintersect, as defined in Figure 1, was then
determined as follows. Starting fromAT, a displacement
opposite in direction ton of the shortest distance fromAT

to the plane

will provide Pintersect.
The magnitude ofúabove is the three-dimensional angle

between Pintersect and AT. Its sign is given by the angle
betweenAT andn: if this angle is greater than 90°, AT must
lie below the plane, and the sign should be negative. The
value ofúin is the three-dimensional angle between Pintersect

and (CR f N). If the cross product Pintersect× (CR f N) is
parallel to n, then Pintersect falls in the positive half-plane
defined in Figure 2B, if antiparallel, the negative half-plane.

Analysis of Preferential Side-Chain Conformers.Initial
graphical examination of statistical data was performed on
an octane using MATLAB 6.0 (The MathWorks, Natick,

MA); we have since implemented comparable graphing with
IDL. Regions of dense population in (r(CR f AT), úab, úin)
space were selected visually using a variety of 2-D plots of
úab vs úin,1-D histograms of each of the three parameters
and 3-D plots in (r,ú, ú). In cases where multiple regions
overlap in one of the parameters, an arbitrary cutoff was
employed to separate regions. Fitting of multiple Gaussian
or Laplacian distributions to such a histogram would not be
immediately constructive, since only the parameter in ques-
tion is represented on a given histogram, and analysis of
further probabilistic information would not be obtained with
such a fitting. (Exact cutoffs employed for regions are
available upon request.) Unfortunately, standard deviations
may be misrepresented in cases where regions overlap (less
than 20% of regions) in that such statistical variables may
appear narrower than they actually are due to data tails being
cut off and causing artificially lowσ. Conversely, distant
outliers are often still within a given region since cutoffs
are only imposed to separate regions of relatively high
population leading to an increasedσ. Use of modal values
minimizes the impact of arbitrary region cutoffs. To deter-
mine modes, the data were divided into bins of widthσ/15
over the rangeµ ( (4σ + σ/30), from which the bin
containing the highest frequency of counts was considered
the mode. The bin widthσ/15 was an arbitrary decision;
the factor of σ/30 in the histogram range allows the
possibility that the mode may be exactly equal toµ. Ellipsoid
cutoffs calculated asµ ( 2.33σ in each of r,úabove, andúin

for each cutoff region were used to count a variety of
parameters used below in a probabilistic manner. This overall
process will likely be improved through use of an automated
and less arbitrary region selection algorithm. Text files
containing all AT cluster parameter data for each atom
analyzed may be downloaded at www.pence.ca/∼jrainey or
www.chem.utoronto.ca/staff/MCG.

II. Predictive Validation of Parameters. All validation
analysis was carried out using IDL 5.5 on an SGI Octane
IRIX workstation or an Intel Pentium III 533 MHz Windows
NT 4.0 workstation. Source code is freely available upon
request.

Outline of Probabilistic Validation. A second large data
set of high-resolution structures was used to validate the use
of the reduced side-chain representations. Backbone coor-
dinates for each member of this data set were used as a
scaffold to build a set of statistically predicted reduced
representation structures. A variety of strategies for choice
of the AT conformational probabilities were tested (for
convenience 2-3 letter codes are used):

MP - “Most Probable”- using the absolutely preferred
conformation (i.e. that with the highest number of residues
in its µ ( 2.33σ ellipse);

PC - “Probability based on Counts”- using the prob-
ability of finding the given atom in each of theµ ( 2.33σ
ellipses;

PSS - “Probability based on Secondary Structure”-
using the relaxed DSSP35 style PROCHECK38 derived
secondary structure assignments along with the conditional
probability of finding anAT in that secondary structure
element for each of theµ ( 2.33σ ellipses;

PD- “Probability based on backbone Dihedrals”- using
the PROCHECK derived secondary regions of the Ram-
achandran plot along with the conditional probability of

r(CR f AT) ) ||CR f AT||

(CR(n) f N(n)) x (CR(n) f C′(n)) ) n

r(AT‚Pintersect) ) n‚AT

||n||
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finding AT in that region of (φ, ψ) space for each of theµ
( 2.33σ ellipses; and,

CHI - calculating theø1 dihedral angle and using the
conditional probabilities in theµ ( 2.33σ ellipse correspond-
ing to the givenø1 rotamer.

The mode, mean, and distribution of normalized ASA and
distance from protein center (mode for ASA and distance
from center calculated using a histogram of bin width 0.05
over the range 0f 1) were also determined for each region.
No significant correlations were noted between these factors
and the regional populations.

The RMSD (root-mean-square deviation) of the predicted
AT conformation to the experimentally determined atom
location is then determined for each prediction made with
each of the five probabilistic methods as described in detail
below. Backbone dependent rotamer predictions by SCWRL,25

both in the initial, most likely rotamer position and the energy
minimized form are used as a benchmark. Each of the five
methods is considered as a whole as well as for the specific
deviations observed for each residue.

PDB Structure Data Set Used for Validation.Using the
SearchFields interface at the PDB Web site (date of searchs
September 25, 2002), a set of structures was chosen with a
release date after Nov 2, 2001 to avoid duplication with the
culled PDB list used in reduced representation statistics, a
minimum chain length of 50 residues (with nucleic acid and
carbohydrate structures excluded), resolution between 0.5 and
1.8 Å, and maximum 50% sequence identity allowed
(SearchFields uses a Hobohm and Sander type algorithm36,37

as implemented in cluster analysis by Li et al.44) This
provided a set of 723 polypeptide chains. For each PDB
entry, specific chains for analysis were then selected as either
the longest chain in the file or as the first chain, if all chains
were equal in length. This gives an initially culled data set
of 374 chains, one for each of the 374 PDB files employed.

As with the initial parameter determination, the
PROCHECK modified PDB files (“.new” files) were em-
ployed, and nonrepresentative residues were culled. This
provided a final test data set with 372 polypeptide chains
and 116 785 non-glycine residues. PROCHECK derived
secondary structure and Ramachandran regions were col-
lected using the same criteria as above, and backbone and
ø1 dihedral angles were calculated.

Deriving AT Coordinates. The calculation of Cartesian
coordinates for anAT given a set of (r,ú, ú) parameters and
a set of coordinates for N, CR, and C′ requires multiple steps.
(This nontrivial process is provided as a detailed derivation
in the Supporting Information.) This procedure is readily
automated, allowing anAT to be very efficiently fixed in
space.

Probabilistic Parameter Choice.Output files generated
during parameter calculation were parsed in order to produce
each of the parameter and probability values. For simplicity
in this analysis, the conditional probabilities of finding a
secondAT for a residue given the location of the first are
not taken into accountseach side-chain atom is considered
as an independent entity. Inclusion of these additional
constraints should strengthen the predictive ability. If method
MP was selected, the (r(CR f AT), úabove, úin) parameters
coinciding with the maximum number of residues in anyµ
( 2.33σ ellipse were assigned to each residue. If any other
method was selected, the conditional probability, P(R| A),

of finding the representative side-chain atom in a region R
was calculated as

where N(R| A) is the number of residues in theµ ( 2.33σ
ellipse for region R given that condition A is true. (Note
that all outliers are excluded from the sum in the denomina-
tor, leading to a total probability of 1 in all instances.) The
condition A depends on the method being employed. For
method PC, this simplifies to the residue being within the
ellipse for the given region and could be written as P(R)
instead of P(R| A). For method PSS, separate P(R| A)
calculations were carried out for each secondary structure
assignment of PROCHECK. Methods PD and CHI follow
suit, with the appropriate conditions. A two-dimensional
array,PrA, containing [R× A] elements in dimensions of
R columns and A rows is then defined for each amino acid.
Each element in this array is given as

such that each row of the array will sum to a total probability
of one representing one of the conditions Aj.

For each chain, the following general procedure could then
be employed. The numbers of each residue found in the PDB
chain, and not culled, were counted. A vector of random
numbers,Rn, was then generated such that 0e Rnk e 1
with each element k representing each instance of a given
residue. This vector was simply extended by a factor of N
in order to easily and quickly produce values for an ensemble
of N predicted structures. Each elementRnk was associated
with its given condition Aj, such as secondary structure type.
The (r(CR f AT), úabove, úin) parameters predicted for each
atom number k of the given residue are then given by the
region corresponding to

where only the row corresponding to the appropriate condi-
tion Aj in arrayPrA is considered in this inequality and the
max function gives the maximum column element, i, holding
with the inequality. Parameters for each atom may then be
rapidly assigned for large numbers of residues. The method
in the Supporting Information may then be used to assign
the Cartesian coordinates for eachAT assignment using the
associated backbone coordinates. A PDB format file may
then be written for external analysis or graphical exploration,
or the RMSD of the prediction versus the experimentally
determined coordinates may be calculated directly for either
entire predicted structures or for a givenAT.

III. Prediction of Surface Charge Density and Topol-
ogy. The backbone coordinates for pepsin (PDB entry
5PEP45) were used to produce an ensemble of 1015 pre-
dictions of eachAT for all residues with method PC. A
script was developed in Tcl/Tk (a powerful freeware
scripting language available at www.tcl.tk) to carry out this
prediction using an algorithm similar to that discussed in
section II; this script is freely available under the GNU

P(R| A) )
N(R | A)

∑
R

N(R | A)

PrAij ) ∑
i

P(Ri | A)

i ) max(Rnk e PRAij )
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general public license from www.pence.ca/∼jrainey or
www.chem.utoronto.ca/staff/MCG. The Cartesian space of
the protein was divided into cubic volume elements with
dimension 0.5× 0.5 × 0.5 Å using thex, y, and z axes
defined in the original PDB file and the numbers of atoms,
positive and negative charges were counted in each volume
element using a second Tcl/Tk script, again freely available.
Charges were counted as the following:+1 for Nú of Lys,
+0.5 for Nη1 and Nη2 of Arg; -0.5 for Oδ1 and Oδ2 of Asp
and Oε1 and Oε2 of Glu; residue 23 was considered as a cis
Pro. The freeware open source program rotater by Craig
Kloeden (modified slightly from version 5.0b2 for Apple
Macintosh OS X available from http://casr.adelaide.edu.au/
rotater/ to provide additional coloring capabilities) was used
to visualize the predicted atom and charge density using an
input file generated automatically by the same Tcl/Tk script
used to count atom and charge elements. (A volume element
output file could equally easily be generated for calculation
purposes instead of graphing, if an application beyond simple
visualization is desired.) Briefly, each volume element is
represented as a cube with a gray scale intensity depending
on the number of atoms contained within it and normalized
to the largest count observed; if the element contains positive
or negative charge, it is colored blue or red respectively,
again with hue intensity determined by the count of charges;
finally, this is superimposed on a CR trace colored in green,
with residues connected in order from N- to C-terminal.

RESULTS AND DISCUSSION

Preferred Side-Chain Conformations.The initial culled
PDB data set forAT calculation contained 792 polypeptide
chains from 749 PDB entries, with 183 206 entries. The
further culling provided a final data set of 154 736 residues,
with AT data sets ranging in size from 396 proline residues
with N-terminal cis and C-terminal trans peptide bonds, 933
cystine residues, 1539 cysteine residues, and 2533 tryptophan
residues up to 14 246 leucines and 15 245 alanines. In
examining the three-dimensional distributions ofAT groups,
anywhere from 1 to 7 clusters in (r,ú, ú) space containing
∼5% or more of a given side-chain atom may be readily
located.AT groups found in 1-3 clusters are summarized
in Table 2; the remainingAT group conformations have 4-7
clusters, given in the Supporting Information. Note that while
only theAT groups listed in Table 1 are analyzed herein, all
substituents fromAâ out to Aη are represented, indicating
the ability to calculate a reduced representation at any
position in the side chain. As may be expected, the Tyr Cú,
for example, displays preferences extremely similar to those
for Phe Cú (Rainey and Goh, unpublished). Preferences of
each cluster with respect to secondary structure, (φ, ψ)
dihedral angle, accessible surface area, and distance from
the protein center were calculated; these will be made freely
available in text file format (www.pence.ca/∼jrainey or
www.chem.utoronto.ca/staff/MCG), since their envisioned
utility is in an automated probabilistic use in computation
(as used herein for validation), rather than explicit consid-
eration of each preference.

As one would expect, the side-chain length increases
directly with the number of bonds betweenAT and Cê (Figure
3). Notably, as the number of bonds toAT increases, the
spread in the r(CR f AT) values observed also increases.

Although anywhere from 1 and 7 conformational clusters
are observed for the variousAT groups examined, the
populated regions of (úabove, úin) space are noticeably
clustered. This is demonstrated in Figure 4, where all
observed angular conformation pairs are plotted for each of
the tabulatedAT groups. Such clustering in the reduced space
defined herein is not immediately intuitive simply based upon
all-atom rotamers but seems illustrative of the potential power
of a reduced approach. A brief overview of characteristics
observed for each class of side chain will now be given prior
to discussion of the predictive validation.

Alanine. Alanine Câ atoms cluster tightly in (r,ê, ê) space.
An extremely tight r(CRf Câ) distribution is seen, withµ
1.526 Å, f* 1.523 Å, andσ 0.015 Å. This C-C distance is
extremely close to the 1.521 Å reported by Engh and Huber
in 1991.46 The standard deviation of our result (0.015),
however, is less than half that reported by Engh and Huber
(0.033), implying improved statistics due to the much larger
high resolution data set now available. The angular distribu-
tion relative to the backbone plane in Figure 1 also
demonstrates a very tightly clustered preferential conforma-
tion.

Proline. The fact that proline can only assumeg+ andg-

ø1 rotamers is directly mirrored by the observed (r, ú, ú)
clustering pattern (Table 2). Interestingly, the proportion
observed in each rotamer is practically equal for Pro residues
with both N- and C-terminal trans peptide bonds, while the
g+ rotamer is strongly preferred by the set of Pro residues
following an N-terminal cis peptide bond.

γ-Substituent Terminated Residues.As would be an-
ticipated, each of the four residues with a terminalγ-
substituent (cysteine and the disulfide linked cystine, serine,
threonine and valine) displays three clusters in (r, ú, ú) space
(Table 2). Each corresponds to one of the threeø1 rotamers
(g-, t, or g+). These correspond to the regions in (úabove, úin)
labeled 1, 2, and 3, respectively. Note that for region 3 (g+)
the distributions inúin have extremely largeσ. This is due
to the fact that theAT is nearly perpendicular to the backbone
plane given in Figure 1 and thatúin therefore has an extremely
minimal effect on the position of the residue.

The observed side-chain lengths vary depending upon the
type of γ-substituent atom. In order of increasing length,
these are Oγ(∼2.3-2.4 Å), Cγ(∼2.5 Å), and Sγ(∼2.8 Å).
These lengths are practically unaffected by branching, as can
be observed by comparing the Ser Oγ lengths to Thr Oγ1, or
by the nature of the branch, in comparison of either Val Cγ

with Thr Cγ2. Stereochemistry dictates that locating one atom
in a branched side chain must unambiguously provide the
location of the second atom; this is upheld in the conditional
statistics observed for the Thr and Val substituents (given
in the Supporting Information.)

δ-Substituent Terminated Residues.As would be an-
ticipated from the addition of at least one bond and atom to
each side chain, the fourδ-terminated residues (asparagine,
aspartate/aspartic acid, isoleucine, and leucine) tend to
display more complicated distributions than the previous
classes. All four residues have branched side chains: Asn,
Asp, and Leu branch at theγ-substituent, Ile at theâ-
substituent. The conformational preferences for eachδ-
substituent (Table 2, Figures 3 and 4, and Supporting
Information) all overlap with each other in various ways.
The conditional proportions of oneAT being located given
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the location of the otherAT are given for Asn, Asp, and
Leu in the Supporting Information.

Unlike theγ-substituents, these conformational preferences
cannot be clearly categorized into simple, superimposable
groups. However, several observations may be made. Two
conserved clusters falling within region 1 in Figure 4 are,
without exception, the most populated regions for all
substituents. The conditional probabilities of each branched
side chain demonstrate that a givenδ-substituent in one of
these positions corresponds exactly to the otherδ-substituent
being located in the other of these positions. Compared with
the previous, shorter side chains, more variability is seen in
the distance from CR to each of theδ-substituents. Interest-
ingly, however, the conditional probabilities show that one

substituent will be significantly further from the CR than the
other substituent. Finally, Leu is surprisingly simple, with
only three regions demonstrating significant numbers of
residues for either of its Cδ substituents, with∼86% of Leu
residues accounted for in these populated regions.

ε-Substituent Terminated Residues.Even with a further
increase in side-chain length, glutamine, glutamate/glutamic
acid, and methionine display a similar complexity in side-
chain conformational preference to theδ-substituent termi-
nated residues. Notably, theε-substituent terminated residues
no longer display a significant population in region 3 of
Figure 4 (the broadly distributed conformations withúab >
60°). Instead, all of the residues are fairly concentrated within
several regions (Table 2, Figures 3 and 4, and Supporting

Table 2. Statistically Preferred Conformations ofAT for Given Residues with 1-3 Observed Preferred Conformationsa

Ala-Câ P 0.913
N ) 15 245 f* [1.523, 52.59, 124.48]

σ (0.015, 2.38, 2.70)
Pro-Cγ P 0.458{0.965, 0, 0.000, 0.000} 0.444{0.000, 0.966, 0.000}
N ) 7387 f* [2.377, 37.04, 64.27] [2.378, 67.07, 30.52]

σ (0.029, 4.89, 3.10) (0.032, 4.63, 10.69)
Pro-Cγ (cis) P 0.119{0.951, 0.000, 0.000} 0.816{0.000, 0.976, 0.000}
N ) 396 f* [2.396, 45.67, 60.83] [2.368, 69.80, 23.62]

σ (0.032, 5.15, 3.02) (0.036, 3.88, 11.99)
Cys-Sγ P 0.488{0.919, 0.000, 0.000} 0.264{0.000, 0.000, 0.925} 0.169{0.000, 0.925, 0.000}
N ) 1539 f* [2.805, 24.36, 95.01] [2.786, 26.74, 158.94] [2.829, 83.70, 183.32]

σ (0.043, 5.03, 5.28) (0.038, 4.12, 4.92) (0.039, 4.27, 64.12)
Cystine-Sγ P 0.627{0.926, 0.000, 0.000} 0.192{0.000, 0.000, 0.913} 0.099{0.000, 0.902, 0.000}
N ) 933 f* [2.791, 28.52, 91.41] [2.776, 29.60, 155.76] [2.817, 87.74, 80.41]

σ (0.041, 4.97, 5.81) (0.042, 5.02, 7.49) (0.042, 5.08, 75.32)
Ser-Oγ P 0.267{0.932, 0.000, 0.000} 0.217{0.000, 0.000, 0.928} 0.448{0.000, 0.902, 0.000}
N ) 9101 f* [2.427, 26.92, 91.99] [2.432, 31.76, 158.85] [2.434, 83.55, 176.74]

σ (0.036, 4.44, 5.30) (0.037, 4.80, 6.32) (0.036, 3.63, 45.27)
Thr-Oγ1 P 0.404{0.928, 0.000, 0.000} 0.074{0.000, 0.000, 0.957} 0.454{0.000, 0.937, 0.000}
N ) 9692 f* [2.424, 28.87, 91.70] [2.438, 27.05, 153.75] [2.432, 83.87, 188.25]

σ (0.032, 3.74, 4.09) (0.036, 5.04, 5.96) (0.032, 3.36, 55.43)
Thr-Cγ2 P 0.451{0.000, 0.929, 0.003} 0.401{0.922, 0.000, 0.000} 0.073{0.001, 0.000, 0.944}
N ) 9692 f* [2.524, 28.83, 92.80] [2.521, 29.34, 160.45] [2.547, 82.31, 162.93]

σ (0.033, 4.45, 4.26) (0.033, 3.44, 4.13) (0.035, 4.36, 37.18)
Val-Cγ1 P 0.178{0.957, 0.000, 0.00} 0.690{0.000, 0.000, 0.933} 0.066{0.000, 0.937, 0.000}
N ) 12 048 f* [2.515, 27.98, 93.44] [2.525, 29.78, 161.91] [2.539, 83.20, 157.06]

σ (0.030, 4.49, 4.77) (0.028, 3.57, 3.79) (0.029, 3.95, 37.04)
Val-Cγ2 P 0.690{0.000, 0.000, 0.933} 0.068{0.000, 0.975, 0.000} 0.175{0.942, 0.000, 0.000}
N ) 12 048 f* [2.517, 27.91, 92.42] [2.532, 25.29, 156.60] [2.530, 84.08, 147.63]

σ (0.029, 4.07, 3.89) (0.031, 6.35, 7.21) (0.031, 3.54, 40.99)
His-Nε2 P 0.515{0.935, 0.000, 0.000} 0.300{0.000, 0.000, 0.935} 0.120{0.000, 0.952, 0.000}
N ) 3643 f* [4.424, 15.49, 81.23] [4.538, 15.19, 166.98] [4.520, 78.42,-79.63]

σ (0.096, 7.54, 8.84) (0.92, 7.35, 9.94) (0.074, 5.43, 51.45)
Phe-Cú P 0.504{0.925, 0.000, 0.000} 0.311{0.000, 0.000, 0.920} 0.120{0.000, 0.952, 0.000}
N ) 6681 f* [5.115, 12.76, 87.24] [5.132, 17.17, 168.62] [5.144, 79.01,-40.57]

σ (0.066, 5.84, 7.92) (0.065, 5.18, 7.39) (0.059, 4.70, 41.97)
Trp-Nε1 P 0.462{0.930, 0.000, 0.000} 0.326{0.000, 0.000, 0.940} 0.145{0.000, 0.953, 0.000}
N ) 2533 f* [4.520, 10.90, 79.62] [4.516, 12.48, 160.95] [4.574, 78.12,-13.88]

σ (0.114, 8.01, 9.38) (0.101, 8.10, 9.52) (0.081, 5.20, 55.12)
Tyr-Oη P 0.500{0.928, 0.000, 0.000} 0.313{0.000, 0.000, 0.920} 0.112{0.000, 0.937, 0.000}
N ) 5931 f* [6.438, 9.46, 79.68] [6.446, 13.81, 174.60] [6.480, 73.47,-69.54]

σ (0.083, 6.36, 8.62) (0.085, 5.94, 8.29) (0.80, 4.89, 36.82)
Leu-Cδ1 P 0.571{0.860, 0.000, 0.000} 0.258{0.001, 0.000, 0.828} 0.039{0.045, 0.000, 0.004}
N ) 14 246 f* [3.901, 40.14, 103.00] [3.108, 4.52, 150.49] [3.105, 1.32, 76.78]

σ (0.040, 3.97, 5.37) (0.079, 3.84, 7.90) (0.107, 7.45, 13.36)
Leu-Cδ2 P 0.574{0.864, 0.000, 0.000} 0.249{0.000, 0.000, 0.803} 0.049{0.056, 0.011, 0.013}
N ) 14 246 f* [3.101, 1.47, 108.12] [3.908, 42.84, 149.24] [3.903, 36.56, 116.63]

σ (0.086, 4.06, 8.10) (0.039, 3.71, 5.70) (0.091, 5.33, 9.47)
Gln-Oε1 P 0.465{0.487, 0.434, 0.432} 0.273{0.294, 0.000, 0.295} 0.073{0.118, 0.000, 0.001}
N ) 4924 f* [4.313, 50.80, 124.46] [3.396, -5.84, 127.73] [4.861, 27.06, 101.43]

σ (0.131, 10.14, 19.84) (0.339, 7.66, 19.06) (0.075, 11.43, 9.67)
Glu-Oε1 P 0.599{0.579, 0.540, 0.652} 0.216{0.255, 0.000, 0.208} 0.080{0.104, 0.222, 0.000}
N ) 6910 f* [4.309, 52.99, 128.29] [3.177, -8.01, 123.73] [3.407, 41.18, 42.61]

σ (0.111, 8.60, 16.93) (0.224, 6.96, 11.48) (0.158, 8.22, 10.87)

a P - proportion of totalAT groups observed within ellipse (or ellipsoid) enclosed byµ ( 2.33σ; ø1 rotamer P for ellipse given in order{g-,
g+, t}. f* modes [r(CR f AT), úab, úin] and σ standard deviations (r(CR f AT), úab, úin) given respectively.
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Information.) Amazingly, 80-90% of the Oε1 substituents
of both Gln and Glu are highly concentrated within three
regions of conformational space. These display very similar
correlations with theirε2-substituents, with statistics provided
in the Supporting Information. Unfortunately, only four
regions of major population in conformational space were
discernible for the Cε atom of Met, leaving almost 35% of
Met Cε atoms out of the statistical calculations. A more
elaborate selection scheme is likely needed to categorize
further Met Cε conformational preferences.

Aromatic Residues.Each of the four aromatic residues,
histidine, phenylalanine, tryptophan, and tyrosine, has anAT

displaying highly similar conformational preference clustered
into each one of regions 1-3 of Figure 4. As with the
γ-substituents, this corresponds directly to theø1 rotamer.
For His and Tyr, where twoAT groups were used (Table 1),
only one of theAT choices fits into this common category.
The two ring N atoms of His were chosen for analysis, since

these will share a positive charge in the protonated, basic
state. It is the more distal Nε2 atom which fits into the
common conformational class. For Trp, Nε1 was chosen as
the representative of the five-membered ring, while Cη2 was
chosen as a representative limit of steric bulk for the six-
membered ring. The Nε1 conformations fall into the common
class. For Phe, the Cú atom is considered; for Tyr, the Oη

atom (the Cú shows the conformations indistinguishable from
Phe Cú.) Note that, unlike theγ-substituents, each of the
aromaticAT groups has the same order of preference of the
three conformations.

Despite the drastically different configurations of the His
Nδ1 and Trp Cη2 atoms, these aromatic substituents show an
interesting number of common conformational preferences.
Statistical values for the seven most populated regions of
each of theseAT atoms are given in the Supporting
Information. Conditional probabilities of finding each of
these atoms given the location of either three conformation

Figure 3. Observed length of side chains toAT over given numbers of bonds.

Figure 4. Observed pairs of angular conformations for givenAT types. Regions are numbered 1-3 for convenience.
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Nε substituent are again given in the Supporting Information.
Although the relative populations in each region differ, there
is a striking correspondence between the region in which
the ε-substituent is found and the region in which the His
Nδ1 or Trp Cη2 atom is found.

Basic Residues.The two basic residues, Lys and Arg, may
be logically grouped together both by functionality and by
the length of their side chains. Both of these residues show
a variety of conformational preferences, provided in the
Supporting Information and visible in Figures 3 and 4. The
Lys residue displays 7 populated conformations for the Nú

atom. Arg displays 5 conformations for the Nη1 atom and a
further 7 conformations for the Nη2 atom. Conditional
probabilities for the two Nη atoms of Arg are given in the
Supporting Information.

Validation of Representation via Prediction. It should
be reiterated that the goal of this work is not to develop a
highly sophisticated and optimized predictive methodologys
instead, at this stage we opted to carry out a Monte Carlo
styled randomized test. We feel that the best way to
demonstrate the applicability of the reducedAT representa-
tions is to generate large numbers of predictions and compare
these to the predictive capabilities using the now mature all-
atom backbone dependent rotamers. In generating 25 proba-
bilistic based structures with each method for each of the
372 PDB chains used as a test case, a number of predictions
should be in good agreement with the experimental structure
if the reduced representation is indeed a valid predictive tool.
Presumably, with the appropriate algorithm, the same agree-
ment with experiment could be consistently arrived at. We
hope that these predictions serve not only to demonstrate
the potential reduction of computing time and speed of
prediction available using these representations but also to
show that the reduced representations are indeed highly
capable of providing representative locations for substituents
that may be several Ångstroms from a CR using only 3
parameters.

Overall Success of Crude Predictive Methods.Each of
the five probabilistic side-chain placement methods was
tested using a data set of 372 polypeptide chains (culled from
374 PDB entries), with 116 785 non-Gly residues in the final
culled data set. Using the MP method described above, only
a single prediction will ever be generated for a given
backbone. For the remaining 4 methods, the results reported
here are for ensembles of 25 predictions carried out for each
structure by each method. Running on a Pentium III 533

MHz Win NT workstation with 128 MB RAM, this particular
ensemble of 37 572 protein structures containing∼1.18
billion predicted atoms took less than 4 h to generate and
compare with the parent experimental data.

Table 3 provides RMSD values based on the ensemble of
predicted structures for each of the five predictive methods
used herein. Notably, the MP method provides a very
reasonable RMSD with mean of 2.71 Å over the 372
predicted polypeptide chains, with a total of 116 785AT

predictions. The methods PC, PSS, and PD are practically
indistinguishable with RMSDs of 3.00-3.04 Å for each set
of 372× 25 predictions. Finally, the CHI method provides
an excellent RMSD of only 1.74 Å for the ensemble of 25
predictions for each of the 372 PDB structures. In compari-
son, using backbone dependent rotamers, the SCWRL
predicted structures provide an average RMSD of 2.37 Å
using the most likely rotamer for a given backbone config-
uration and 1.94 Å after the lengthy energy minimization
process. Table 3 also demonstrates the RMSD of both the
best and worst predicted structures produced in an ensemble
of predictions. (One structure, 1K3I, had only 6 residues that
were not culledsit is excluded from the “best” prediction
category.) A great deal of variability in the agreement of
the predictions to the experimental structures is quite apparent
for the five methods tested herein. The best predictions from
each method are very promising, while the worst predictions
are rather far from the experimental and are drastically worse
than the SCWRL worst cases.

We tested the possibility of improving side-chain predic-
tion using probabilities dependent upon observed secondary
structure or general region of Ramachandran plot. Clearly
(Table 3) this did not serve to generally improve prediction.
Prediction of the same set of structures using the most likely
conformation given the region of Ramachandran plot (i.e.
method MP for theconditional probabilitiesof PD) did not
improve prediction beyond MP except in the case of four
AT groups: Cys Sγ, Asp Oδ1 and Oδ2, and Met Cε. A more
elaborate backbone-dependent statistical analysis, along the
lines of those developed by Dunbrack with Karplus47 or
Cohen,32 is probably required to improve these conditional
predictions.

At first glance, it is not intuitive that the inclusion of less
likely conformations with the probabilistic method PC
worsens the mean RMSD for structural prediction over just
choosing the most likely conformation (method MP). This
is probably due to some combination of unlikely conforma-

Table 3. Average Terminal Atom RMSD between Predicted and Experimentally Determined Coordinates for the Data Set of 372 PDB Chains
Containing 116 785 Predictable Non-Glycine Residuesc

AT prediction methoda number of structures number ofAT’s RMSD µ(σ) - (Å) best prediction (N)b worst prediction (N)b

MP 372 117 685 2.71 (0.35) 1.73 (63) 7.15 (94)
PC 9300 2 919 625 3.04 (0.32) 1.64 (88) 9.98 (326)
PSS 9300 2 919 625 3.00 (0.32) 1.56 (63) 8.44 (94)
PD 9300 2 919 625 3.00 (0.33) 1.67 (63) 9.96 (94)
CHI 9300 2 919 625 1.74 (0.34) 0.56 (56) 9.61 (94)
SCWRL- most likely 369 113 019 2.37 (0.26) 1.53 (108) 3.00 (85)
SCWRL- minimized 360 108 294 1.94 (0.26) 1.33 (101) 2.80 (134)

a Methods acronyms refer to those introduced in text- 25 predictions were carried out for each polypeptide with methods PC, PSS, PD, and
CHI. The SCWRL “most likely” prediction is that contained in the A-file output by SCWRL; “minimized” is the final output.b N - number ofAT

predictions in best or worst predicted structure of entire ensemble of structures predicted by given method.c The predictions carried out using the
AT conformation library and conditional probabilities given herein are presented alongside the RMSD provided with the Dunbrack and Cohen
backbone dependent rotamers, as predicted by SCWRL.24 For comparison, the RMSD values of the best and worst predictions provided by each
method are also given.
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tions being randomly chosen along with the fact that our
random selection method, once MP is no longer enforced,
takes no account of conditional probabilities for branched
substituents of a side chain that may not, therefore, be
positioned correctly with relation to each other for a given
predicted residue. Note that Bower et al. employ the most
likely (backbone dependent all atom) rotamers as their
starting point in SCWRL25sanalogously, our results indicate
that the most likelyAT is probably the best starting point
for structural exploration with our reduced representation.
Frequency distributions of RMSDs are shown in Figure 5

for the methods MP, PD, and CHI. With both MP and PD,
a number of excellent predictions are seen in the range below
2.5 Å RMSD. Furthermore, while theµ RMSD observed
for MP is better than that of PD and the other probabilistic
methods, Figure 5 demonstrates that the inclusion of less
likely conformations do in a large number of cases (note
the scale difference) lead to a better overall prediction than
simply using the most likely conformation. A direct com-
parison with all-atom based rotamer libraries is difficult, since
these studies usually only compare predictions to a few, select
protein structures. The ensemble of SCWRL predictions
presented herein is not significantly better than the lower
end of this range, however. Therefore, with improved
statistics, prediction at a comparable level of accuracy to
all-atom rotamers should be achievable.

The deviations observed for prediction of eachAT group
are given in Tables 4 and 5. As would be anticipated, an
increase in side-chain length or number of preferred con-
formations leads to an increase in the deviation between
prediction and experiment. Despite the lack of satisfactory
backbone dependent statistics, many of the MP predictions
are as good as or, in some rare cases, better than those made
by SCWRL using backbone dependent most likely all atom
rotamers. Conversely, the mean deviations obtained using
the random (non-CHI) probabilistic methods are in all cases
but one or two worse than those of SCWRL. Subsequent
development of a more elaborate backbone dependent set
of statistics may therefore be anticipated to provideAT

predictions on par with all atom rotamers.
Predicting Statistical Surface Charge Density and

Topology.As discussed in the Introduction, surface exposed
residues of a protein may be anticipated to assume an
ensemble of conformations, rather than a single rotameric
state (e.g., ref 34). The reduced representation introduced
here is one excellent way in which one can predict large
statistically relevant ensembles of locations of important sites
such as charge carrying atoms. This is possibly the most
powerful use of the prediction method we introduce here.
To graphically demonstrate this capability, we have carried
out over 1000 predictions ofAT position for each residue of
porcine pepsin (PDB entry 5PEP). The density of atoms
found in 0.5 Å cubed volume elements, with the Asp Oδ1

and Oδ2, Glu Oε1 and Oε2, Lys Nú, and Arg Nη1 and Nη2

atoms counted as acidic and basic charged atoms as ap-
propriate, is plotted in Figure 6 (b). In comparison to the
crystal structure itself (Figure 6(a)), the reduced representa-
tion is much more suited to the determination of probability
density of charge, especially on the protein surface, as is
evident from smearing of each chargedAT over a wide range
of volume in Figure 6(b) as compared to the single point
seen for each in (a).

The ensemble of 1015 predictions illustrated in Figure 6(b)
indicates that a much wider volume may be sampled by a
given charged side chain than is initially indicated by the
solved X-ray structure. Since the X-ray structure only
represents that rotamer conformation which is favorable
within the context of the crystal packing of the particular
protein crystal being solved, the reduced representation
prediction should be far more indicative of a realistic surface
charge density where many rotamers are sampled than a
calculation based upon a single side-chain conformation. All-
atom prediction approaches are also typically most suited to

Figure 5. Distributions of RMSD of predicted vs experimentally
determined terminal atom positions for entire polypeptide over a
set of 372 PDB structures with terminal atoms predicted using PDB
backbone coordinates: in the most probable position (MP) and with
conditional probabilities for ensembles of 25 predictions for each
polypeptide based on backbone dihedral angles (PD) orø1 dihedral
angles (CHI).
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finding a single structure such as that in Figure 6(a), rather
than to generating a large ensemble of possible structures
such as those that may in fact be representative of a protein
in solution.34 Furthermore, the idea of a more plastic topology
arising from statistical sampling of all likely side-chain
conformations, instead of a single rotamer, should provide
a more reliable representation of protein surface topology.

Other Proposed Applications.In some instances the side-
chain length alone could be extremely useful as a first
approximation in modeling, while in others, the preferred
conformation including the length would be desired. In the
static instance, if a protein backbone is either predicted or
experimentally determined, a reasonable prediction of the
locations of chemically relevant side-chain moieties may then
be readily carried out using the reduced parameter set. In
dynamic use, folding simulations may be envisioned in which
side-chain conformations sample the known stable forms
given by the parameter set herein. Finally, in examination
of experimental data, deviations from the conformations
herein may be used to pinpoint interesting regions of a
protein structure or as a guide to assignment of terminal
atoms in carboxylic acids or amide groups.

Simulations requiring side-chain configurations with a
reduction in degrees of freedom could very readily be carried
out with the parameters given herein. Our data are highly

complementary to the various reduced representations and
coarse-grained approaches reviewed in the Introduction but
provides a rather different starting point for such studies.
The CHI prediction method looks promising for high-
throughput structural studies. If a protein backbone is
determined experimentally along with even someø1 rotamer
values (to a fairly rough accuracy), the statistical parameters
given here could provide a very satisfactory prediction of
the terminal and, functional, side-chain atom locations. This
could be combined with appropriate high-throughput NMR
methods, for example, to screen a large set of proteins for a
desired structural character. Of course, using a similar
conditional probability with all-atom rotamers would likewise
increase their performance significantly. Therefore, it would
be up to the user to weigh the advantages of decreased
computational time vs atomic detail.

The power of such a reduced representation should be very
notable in combinatorial applications. In particular, the
searching of large sets of primary sequence dependent
topological and chemical configuration for a desired struc-
tural and chemical motif could be readily carried out prior
to protein engineering. For example, if a particular topog-
raphy is defined, and a polypeptide framework laid out (e.g.,
a set of amphipathicR-helices or of parallelâ-sheets), the
surface exposed portion could be combinatorially scanned

Table 4. Average RMSD (Top Row for EachAT) and Mean (µ) and Standard Deviation (σ) (Bottom Row for EachAT) between Predicted
and Experimentally DeterminedAT Position for the Test Set of 372 Polypeptide Structures from the PDBa

RMSD (top) & µ(σ) (bottom) from experiment (Å)- methods SCWRL

residue (AT) N MP PC PSS PD CHI likely min

Ala (Câ) 7690 0.133 0.0805
0.048 (0.124) 0.081 (0.071)

Pro (Cγ) 4013 1.01 1.00 0.96 0.96 0.30 0.57 0.55
0.78 (0.64) 0.78 (0.62) 0.73 (0.61) 0.74(0.61) 0.20 (0.21) 0.38 (0.42) 0.37 (0.41)

Pro (Cγ - cis) 246 0.55 0.66 0.66 0.66 0.23 0.46 0.45
0.33 (0.44) 0.43 (0.51) 0.44 (0.51) 0.43 (0.51) 0.17 (0.16) 0.31 (0.34) O.30 (0.33)

Cys (Sγ) 801 1.99 2.21 2.13 2.11 0.32 1.55 1.12
1.51 (1.30) 1.82 (1.25) 1.72 (1.27) 1.68 (1.28) 0.27 (0.18) 1.02 (1.17) 0.63 (0.92)

Cystine (Sγ) 431 1.57 1.89 1.87 1.86 0.24 0.90 0.87
1.08 (1.14) 1.43 (1.21) 1.42 (1.21) 1.42 (1.21) 0.34 (0.26) 0.52 (0.73) 0.51 (0.71)

Ser (Oγ) 4741 1.65 1.90 1.88 1.87 0.28 1.36 1.31
1.26 (1.06) 1.54 (1.15) 1.51 (1.10) 1.49 (1.14) 0.22 (0.17) 0.92 (1.00) 0.87 (0.98)

Thr (Oγ1) 5095 1.75 1.81 1.75 1.80 0.29 0.87 0.77
1.36 (1.10) 1.45 (1.08) 1.37 (1.09) 1.44 (1.08) 0.23 (0.18) 0.48 (0.73) 0.41 (0.65)

Thr (Cγ2) 5095 1.73 1.84 1.78 1.83 0.26 0.91 0.80
1.32 (1.12) 1.46 (1.12) 1.37 (1.13) 1.44 (1.12) 0.19 (0.17) 0.49 (0.77) 0.42 (0.69)

Val (Cγ1) 6415 1.22 1.56 1.53 1.55 0.22 0.84 0.71
0.72 (0.99) 1.08 (1.12) 1.06 (1.12) 1.07 (1.12) 0.17 (0.14) 0.42 (0.73) 0.34 (0.62)

Val (Cγ2) 6415 1.23 1.56 1.54 1.56 0.23 0.83 0.70
0.74 (0.98) 1.10 (1.12) 1.06 (1.11) 1.09 (1.11) 0.19 (0.14) 0.43 (0.71) 0.36 (0.61)

Asn (Oδ1) 3565 2.62 3.00 2.99 2.86 1.31 2.33 2.05
2.08 (1.58) 2.58 (1.53) 2.56 (1.54) 2.41 (1.54) 1.05 (0.78) 1.98 (1.23) 1.73 (1.11)

Asn (Nδ2) 3565 2.19 2.49 2.48 2.44 1.43 2.48 2.22
1.88 (1.12) 2.23 (1.13) 2.21 (1.13) 2.15 (1.15) 1.22 (0.75) 2.12 (1.29) 1.87 (1.19)

Asp (Oδ1) 4786 2.67 3.02 2.97 2.86 0.73 2.46 2.27
2.03 (1.74) 2.50 (1.70) 2.44 (1.71) 2.15 (1.74) 0.56 (0.47) 2.30 (0.87) 2.09 (0.88)

Asp (Oδ2) 4786 1.95 2.14 2.11 2.00 0.82 2.66 2.40
1.58 (1.13) 1.84 (1.08) 1.79 (1.11) 1.65 (1.13) 0.66 (0.49) 2.47 (0.97) 2.21 (0.94)

Ile (Cδ1) 4752 1.67 2.14 2.12 2.13 1.33 1.46 1.18
1.21 (1.15) 1.70 (1.30) 1.66 (1.31) 1.69 (1.30) 0.93 (0.97) 0.97 (1.09) 0.74 (0.92)

Leu (Cδ1) 7730 1.95 2.31 2.27 2.30 1.08 1.75 1.17
1.36 (1.40) 1.76 (1.48) 1.73 (1.48) 1.76 (1.49) 0.62 (0.88) 1.16 (1.30) 0.70 (0.93)

Leu (Cδ2) 7730 2.04 2.28 2.24 2.27 0.95 1.73 1.16
1.48 (1.40) 1.78 (1.43) 1.74 (1.43) 1.77 (1.43) 0.64 (0.70) 1.19 (1.26) 0.73 (0.89)

a Predictions are compared for the fiveAT conformational preference methods given here and for the most likely backbone dependent rotamer
or the energy minimized prediction from SCWRL.24 Note that methods PC, PSS, PD, and CHI are ensembles of 25 x N predictions. See Table 5
for ε-substituent terminated, aromatic, and basic residues.
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Figure 6. (a) Crystal structure of porcine pepsin (PDB entry 5PEP); backbone CR trace in green, allAT atoms (Table 1) shown with gray
electrostatic shell dots, Asp Oδ1 & Oδ2 Glu Oε1 & Oε2 colored red and Lys Nú Arg Nη1 & Nη2 colored blue and spacefilled (drawn in
RasMol,48 www.openrasmol.org). (b) Normalized numbers ofAT predictions in cubic volume elements with side 0.5 Å; backbone CR trace
in green, atom density shaded in gray and acidic and basic atom density shaded in red and blue respectively (see Methods section III for
details.) Scale bars correspond to normalized density of atoms in volume elements of (b).

Table 5. Average RMSD (Top Row for EachAT) and Mean (µ) and Standard Deviation (σ) (Bottom Row for EachAT) between Predicted
and Experimentally DeterminedAT Position for the Test Set of 372 Polypeptide Structures from the PDBa

RMSD (top) & µ(σ) (bottom) from experiment (Å)- methods SCWRL

residue (AT) N MP PC PSS PD CHI likely min

Gln(Oε1) 2791 2.65 2.93 2.92 2.92 2.81 2.68 2.41
2.27 (1.37) 2.56 (1.42) 2.55 (1.42) 2.55 (1.43) 2.45 (1.38) 2.29 (1.39) 1.99 (1.36)

Gln(Nε2) 2791 3.26 3.59 3.56 3.57 2.74 3.02 2.66
2.88 (1.53) 3.24 (1.53) 3.20 (1.53) 3.22 (1.54) 2.45 (1.25) 2.62 (1.50) 2.21 (1.48)

Glu (Oε1) 4067 2.50 2.90 2.86 2.88 2.81 2.43 2.24
2.01 (1.48) 2.43 (1.59) 2.38 (1.59) 2.41 (1.58) 2.34 (1.56) 1.94 (1.47) 1.72 (1.43)

Glu (Oε2) 4067 3.21 3.69 3.64 3.67 2.40 3.00 2.68
2.72 (1.71) 3.23 (1.79) 3.18 (1.78) 3.20 (1.78) 2.00 (1.33) 2.49 (1.67) 2.13 (1.63)

Met (Cε) 1448 3.83 3.56 3.56 3.46 3.19 3.14 2.23
3.07 (2.30) 2.99 (1.68) 2.95 (1.70) 2.97 (1.78) 2.68 (1.70) 2.74 (1.52) 1.72 (1.42)

His (Nδ1) 2066 2.70 3.08 3.05 3.06 1.62 2.48 2.06
2.29 (1.43) 2.73 (1.42) 2.69 (1.42) 2.71 (1.42) 1.40 (0.83) 2.14 (1.24) 1.76 (1.07)

His (Nε2) 2066 3.97 4.44 4.40 4.41 0.96 3.24 2.29
3.07 (2.51) 3.68 (2.49) 3.64 (2.50) 3.63 (2.50) 0.80 (0.52) 2.30 (2.27) 1.51 (1.71)

Phe (Cú) 3561 4.51 5.04 4.88 4.94 0.83 3.30 2.01
3.41 (2.95) 4.08 (2.94) 3.88 (2.96) 3.96 (2.95) 0.70 (0.45) 2.10 (2.55) 1.12 (1.67)

Trp (Nε1) 1424 4.25 4.59 4.47 4.55 1.11 3.31 2.26
3.39 (2.56) 3.89 (2.43) 3.74 (2.45) 3.84 (2.44) 0.94 (0.59) 2.41 (2.28) 1.45 (1.73)

Trp (Cη2) 1424 5.81 6.45 6.34 6.38 4.10 5.09 3.84
4.83 (3.22) 5.78 (2.84) 5.65 (2.91) 5.69 (2.88) 3.47 (2.19) 4.12 (2.99) 2.76 (2.67)

Tyr (Oη) 3126 6.12 6.89 6.72 6.81 1.26 4.48 2.66
4.61 (4.01) 5.63 (3.98) 5.36 (4.01) 5.53 (3.99) 1.06 (0.69) 2.91 (3.41) 1.54 (2.17)

Arg (Nη1) 3340 4.01 4.54 4.54 4.52 4.18 4.64 4.10
3.57 (1.84) 4.08 (2.00) 4.07 (2.00) 4.05 (2.01) 3.74 (1.85) 4.29 (1.76) 3.73 (1.70)

Arg (Nη2) 3340 4.99 5.52 5.52 5.52 5.03 4.39 3.94
4.44 (2.29) 5.00 (2.36) 4.99 (2.35) 5.00 (2.35) 4.53 (2.24) 4.12 (1.51) 3.64 (1.50)

Lys (Nú) 3418 3.74 4.23 4.16 4.19 3.19 3.56 3.05
3.25 (1.85) 3.77 (1.87) 3.73 (1.87) 3.75 (1.86) 2.78 (1.56) 3.05 (1.83) 2.51 (1.73)

a Predictions are compared for the fiveAT conformational preference methods given here and for the most likely backbone dependent rotamer
or the energy minimized prediction from SCWRL.24 Note that methods PC, PSS, PD, and CHI are ensembles of 25 x N predictions. See Table 4
for Ala, γ-, andδ-substituent terminated residues.
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through all combinations of appropriate residues in order to
engineer the given topological and chemical features.

As mentioned in the Introduction, an experimental tech-
nique which may readily benefit from the availability of fast,
accurate topographical calculation is scanning probe micros-
copy (SPM). Approaches such as that of Todd et al. rely
upon prediction of topography and correlation to observed
Ångstrom to nanometer scale measurements of protein
structure.2 The reduced representation herein provides a rapid
way to calculate topographical information for systems which
may not otherwise be suitable for molecular modeling.
Further, the ability to describe topology in a probabilistic
manner (e.g. Figure 6) would allow an SPM image to be
analyzed in a much different context than that provided by
a single structure. Since SPM cannot generally reach single
side-chain resolution, searching an ensemble of possible
topologies convoluted to the resolution observable with a
given SPM probe may provide a more fruitful match to real
topographic data.

CONCLUSIONS

Using a large, culled data set of high-resolution protein
structures, we have determined conformational specifications
in a generalized parameter representation for the terminal
atoms of each of the non-Gly residues. A geometric
framework has also been developed to allow the incorpora-
tion of these parametrized conformations into any polypep-
tide backbone of interest. These preferences range in
simplicity from Ala (with a single preferred conformation)
and Pro (with two preferred conformations) to the Trp Cη2,
Arg Nη2, and Lys Nú atoms (with seven preferred conforma-
tions in clusters containing at least 5% of theAT’s). These
conformations alone should prove valuable as a readily
accessible physical representation for steric extent or the
location of charged moieties of side chains relative to a
peptide backbone.

The representative nature of these conformational prefer-
ences was tested by comparing a large ensemble of predicted
structures made using the statistical side-chain representations
to a nonredundant set of input protein structures. Despite
the relative simplicity of theAT representation, the population
or backbone based conformational preferences are shown to
provide side-chain predictions with mean RMSD of 2.73-
3.04 Å over the entire predicted structure comparing the
experimental versus the predictedAT location. Even with
the crude probabilistic positioning methods herein, the
distribution of RMSD values shows success in terminal atom
positioning that is equal to or better than that provided by
conventional backbone dependent rotamers (using SCWRL
without energy minimization) for approximately 10% of the
ensemble of predictions. With more elaborate probabilistic
selection procedures and minimization algorithms, the pre-
dictive capability of this reduced representation should be
routinely equal to conventional rotamer libraries. This would
allow highly efficient computation of predicted protein
conformation. In the case where aø1 rotamer could be
experimentally determined, protein side chains could be
readily predicted to a very high accuracy using only N, CR,
and C′ atom locationssthe mean RMSD ofAT prediction
using this method was 1.74 Å.

To demonstrate the applicability of the reduced representa-
tion, a volume density plot is shown alongside its corre-

sponding high-resolution crystal structure. Atom locations
on the protein surface are generally observed to smear over
space, rather than localize to a single Cartesian coordinate.
This corresponds more closely to experimental observation
of proteins in solution and provides a starting point for a
more representative manner of carrying out surface charge
density and topology calculations for proteins. In contrast
to a single local minima structure that may be produced with
a typical all-atom approach, the reduced representation allows
for massive ensembles of probable structures to be efficiently
generated for computational use as desired.
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