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ABSTRACT Heating and cooling temperature jumps (T-jumps) were performed using a newly developed technique to trigger
unfolding and refolding of wild-type ribonuclease A and a tryptophan-containing variant (Y115W). From the linear Arrhenius
plots of the microscopic folding and unfolding rate constants, activation enthalpy (DH #), and activation entropy (DS #) were
determined to characterize the kinetic transition states (TS) for the unfolding and refolding reactions. The single TS of the wild-
type protein was split into three for the Y115W variant. Two of these transition states, TS1 and TS2, characterize a slow kinetic
phase, and one, TS3, a fast phase. Heating T-jumps induced protein unfolding via TS2 and TS3; cooling T-jumps induced
refolding via TS1 and TS3. The observed speed of the fast phase increased at lower temperature, due to a strongly negative
DH # of the folding-rate constant. The results are consistent with a path-dependent protein folding/unfolding mechanism. TS1
and TS2 are likely to reflect X-Pro114 isomerization in the folded and unfolded protein, respectively, and TS3 the local
conformational change of the b-hairpin comprising Trp115. A very fast protein folding/unfolding phase appears to precede both
processes. The path dependence of the observed kinetics is suggestive of a rugged energy protein folding funnel.

INTRODUCTION

How do proteins morph into their folded, active forms? By

which mechanisms do they unfold? Despite decades of

computational and experimental research efforts, these pro-

cesses remain elusive. To study folding and unfolding ki-

netics, proteins are usually forced into a nonequilibrium state

by a rapid change of pressure, temperature, or concentration

of chemical denaturant. The analysis of the relaxation ki-

netics toward the new equilibrium position can then inform

about the reaction mechanism and the transition state (TS1)

ensemble.

Most often, these processes are triggered by rapid flow

techniques, involving turbulent mixing with high concen-

trations of a chemical denaturant, such as urea or guanidine

hydrochloride. Such studies are generally confined to time-

scales of 1 ms or longer. An alternative technique is the laser-

induced temperature jump (T-jump) (1–9). Although the

T-jump is used much less often, it provides two main ad-

vantages: 1), it does not require the introduction of extrane-

ous reagent into the sample; and 2), it permits the observation

of conformational changes on the nanosecond timescale.

However, these advantages are hampered by the inability to

perform cooling jumps, and by the gradual temperature de-

crease in the system due to heat dissipation, which has al-

ready occurred after a few milliseconds. Obviously, many

structural events occur on a much slower timescale. Therefore,

an experimental technique is needed to initiate temperature-

induced protein kinetics to study both the folding and un-

folding reactions on timescales of 1 ms and longer. To achieve

this goal, we have designed a new T-jump apparatus based

on stopped-flow technology, hereafter called ‘‘mT-jump’’

(rapid-mixinig T-jump). The novel technical aspect of the

experiments presented herein is that relaxation kinetics can

be induced by heating as well as cooling T-jumps of mag-

nitudes between 2 and 40�C. The possibility of studying

protein folding/unfolding relaxation kinetics in both direc-

tions is important. Indeed, a number of recent findings from

experimental and theoretical studies suggest that these pro-

cesses are path-dependent, as a consequence of complex

folding/unfolding energy landscapes (5,10–13).

We applied this technique to bovine pancreatic ribonu-

clease A (RNase A; EC 3.1.27.5). For many years, this en-

zyme has been a model for studies of protein structure,

energetics, disulfide-bond reactions, and conformational

folding (14–16). RNase A is a single domain protein that

consists of 124 residues and possesses four disulfide bonds

and four Pro residues, of which Pro93 and Pro114 are in the cis
conformation (17). The cis-trans isomerization process of

these Pro residues has been implicated in the heterogeneity of

the conformational refolding and unfolding of RNase A (18).

As a consequence of the lack of Trp residues, the spec-

troscopic probes available for monitoring local conforma-

tional transitions of RNase A are limited. Therefore, in a

previous study (19), we introduced a Trp residue on the

solvent-exposed exterior of a C-terminal b-hairpin structure

(17), which constitutes the main chain folding initiation site
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cédex 5, France. Tel.: 33-467-14-33-85; Fax: 33-467-14-33-86; E-mail:

lange@montp.inserm.fr.

Editor: Heinrich Roder.

� 2008 by the Biophysical Society

0006-3495/08/05/4056/10 $2.00

4056 Biophysical Journal Volume 94 May 2008 4056–4065



of the protein (20). In this work, we present the relaxation

profiles obtained for the temperature-induced folding/

unfolding of wild-type RNase A and its Y115W variant. The

fluorescence change of the Trp variant is substantially en-

hanced upon unfolding, thereby reporting on the chain

folding initiation site conformation as well as on the isomeric

state of the neighboring X-Pro peptide bonds. This is the first

time, at least under atmospheric pressure, that protein folding

and unfolding kinetics has been investigated in both direc-

tions under identical physicochemical conditions.

METHODS

Materials

Escherichia coli strain BL21(DE3) used for the expression of RNase A

was obtained from Novagen (Madison, WI). Oligonucleotides used for site-

directed mutagenesis and molecular biology enzymes were from Roche

(Basel, Switzerland). Other chemicals were from Sigma (St. Louis, MO).

Protein expression and purification

Mutant and wild-type genes were expressed in BL21(DE3) cells using the T7

expression system, and the recombinant proteins were purified essentially as

described by Torrent et al. (19). Protein concentrations were determined

spectrophotometrically using a molar extinction coefficient at 278 nm of

9800 M�1 cm�1, and 14,800 M�1 cm�1, for the wild-type and variant pro-

tein, respectively (19).

Equilibrium measurements

The heat-induced unfolding transitions of wild-type RNase A and Y115W

variant were measured between 40 and 70�C by monitoring the change in

fluorescence at 303 and 346 nm, respectively. The data were recorded in a

1-cm quartz cuvette on an Series 2 fluorescence-spectrophotometer (SLM

Aminco, Amico Bowman, Foster City, CA) equipped with a thermostated

sample holder. Lyophilized proteins were dissolved to a concentration of

0.1 mg ml�1 in 50 mM sodium acetate buffer at pH 5.0, and filtered using a

0.22-mm filter. Fluorescence was excited at 278 nm (wild-type protein)

and 290 nm (Y115W variant), using a bandwidth of 4 nm. Emission

(accumulation of three scans) was collected between 280 and 430 nm for

wild-type protein and between 310 and 440 nm for the Y115W variant,

with a bandwidth of 8 nm. After each temperature increment/decrement,

the protein was allowed to equilibrate before spectral recording. The

equilibrium fluorescence intensity profiles versus temperature were fitted

to Eq. 1,

X ¼ ðXn � XdÞ1 ðq� mÞ T
1 1 e

�½ðDH�TDSÞ=RT� 1 Xd 1 m T; (1)

where X is the observed fluorescence intensity at temperature T, and Xn and

Xd are the fluorescence intensities of the folded and unfolded states,

respectively. q and m are correcting factors that take into account linear

slopes of the pre- and posttransition regions, respectively.

Kinetic measurements

Unfolding and refolding relaxation kinetics was measured by Tyr fluores-

cence excited at 278 nm for wild-type RNase A, and by Trp fluorescence

excited at 290 nm for the Y115W variant. Final protein concentrations were

0.125 and 0.05 mg ml�1, respectively, in 50 mM sodium acetate buffer at pH

5.0. The time-dependent fluorescence change was monitored by using a 295-

or a 320-nm high-pass filter via a rapid-kinetics optical system MOS-200

from BioLogic (Grenoble, France). The rapid-mixing T-jump system (Fig. 1)

is based on stopped-flow technology. The T-jump accessory was installed

on a BioLogic (Grenoble, France) SFM-300 stopped-flow chassis. It has

a temperature range from 5 to 90�C, precision of temperature reading

of 60.01�C, a maximum temperature jump of 640�C, a temperature vari-

ation in the cuvette after a T-jump of ,1%/30 s, and a maximum precision of

T-jumps of 60.1�C.

The device achieves temperature changes by mixing two solutions of

initially different temperature. The final temperature of the mixture is de-

termined by both the initial temperatures of the two solutions and the mixing

ratio. In our stopped-flow experiments, 252 ml of solution were delivered at

a mixing ratio of 1:1 to a high-density mixer via two thermostated syringes

(T set at 25�C) and two storage lines mounted in thermostated aluminum blocks.

The temperature of each line (V¼ 150 ml) was controlled by Peltier elements

and monitored by thermocouples fixed to the corresponding block. Before

each shot, the solutions in the storage lines were allowed to equilibrate for

FIGURE 1 Schematic representation of the mT-jump apparatus. The

instrument, installed on a Bio-Logic stopped-flow basis, is fully controlled

by the manufacturer’s software and achieves temperature changes by mixing

two solutions of initially different temperatures, contained in two syringes

(1). Three independent thermoelectric elements (2) are used to control the

temperatures of the two storage lines (4) and of the observation cell (3). The

storage lines are built into aluminum blocks in direct contact with the Peltier

elements. Their volume is sufficient for one stopped-flow experiment. The

temperature of the observation cell is monitored by a temperature probe (5)

attached to its quartz surface.
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3 min to ascertain homogenous and stable temperatures. The observation

cuvette was temperature-regulated by a third Peltier element. Its temperature

was adjusted to be equal to the temperature of the mix, as monitored on the

quartz surface by a temperature probe. By using a total flow rate of 14 ml s�1,

a dead time of 3.7 ms was achieved.

Temperature calibration

To adjust the temperature of the mix to that of the observation cell, calibra-

tion experiments were performed for each experimental T-jump condition,

using N-acetyltryptophanamide as a temperature probe. The fluorescence of

this fluorophore depends strongly on temperature; it decreases instanta-

neously when temperature increases, and vice versa, by ;1.4% for each

degree Celsius. It was therefore suitable to monitor time-dependent tem-

perature changes of the solution inside the observation cuvette resulting from

a small temperature difference between the mix and the thermostated cuvette.

Excitation was carried out at 250 nm, and the time-dependent fluorescence

change was monitored using a 320 nm high-pass filter. For a typical cali-

bration experiment, we mixed two solutions of N-acetyltryptophanamide at

6 mM under the precise experimental conditions (same temperature jump,

mixing ratio, and flow rate) we intended to perform with the protein. If the

system was well calibrated, no change in fluorescence was observed (the

temperature of the mix was equal to the temperature of the cuvette). In

contrast, a decreasing/increasing signal signified that the temperature of the

mix increased/decreased in the cuvette during the experiment. Fine-tuning of

the Peltier elements was repeated until a flat kinetic line was obtained.

Determination of kinetic parameters from
relaxation profiles

The relaxation profiles of the unfolding/folding reaction, after each T-jump

(average of three jumps) were fitted to single or double (sequential) decays,

using Bio-Kine software from BioLogic.

The individual rate constants ku and kf of the folding/unfolding reaction,

Folded state ���! ���ku

kf

Unfolded state;

were determined according to Eqs. 2 and 3,

kobs ¼ ku 1 kf ; (2)

KT ¼ e
�½DGUT

=RT� ¼ ku=kf ; (3)

where T is the final temperature of each jump, kobs is the measured rate

constant at temperature T, KT is the equilibrium constant at temperature

T, and DGUT is the free-energy change of unfolding obtained from equilib-

rium experiments at temperature T, determined from the fitted values of DH
and DS.

Using a two-state Kramers transition state analysis, the activation entropy

DS# and activation enthalpy DH# of ku and kf were determined by fitting ln

k ¼ f(1/T), according to Eq. 4,

lnk ¼ lnðnðT1=2ÞÞ1 lnðhðT1=2Þ=hðTÞÞ
1 DS

#
=R� ðDH

#
=RÞð1=TÞ; (4)

where h(T1/2) and h(T) are the viscosity of water at the half-transition

temperature and at the final experimental temperature, respectively. The

preexponential factor n(T1/2) was set to 106 s�1. Alternatively, the Eyring

formalism was used according to Eq. 5, where kB represents Boltzmann’s

constant, and h Planck’s constant.

lnk ¼ lnðkB=hÞ1 ðDS
#
=RÞ � ðDH

#
=RÞð1=TÞ1 lnT: (5)

RESULTS

Folding and unfolding under
equilibrium conditions

As shown in Fig. 2 A, high-temperature-induced unfolding of

wild-type RNase A leads to a Tyr fluorescence increase of

;20%. For RNase Y115W, the fluorescence of the single Trp

residue is quenched in the native state by local range inter-

actions, particularly with disulfide bond 58–110. As shown in

Fig. 2 B, high temperature disrupts these interactions and

leads to a strong (sixfold) fluorescence enhancement. How-

ever, no significant shift of the fluorescence spectrum is ob-

served, with a lmax between 342 and 344 nm, indicating a

polar, water-exposed Trp environment already in the native

state. The sigmoidal shape of the spectral transitions of wild-

type and Y115W RNase A for both proteins indicates a two-

state transition between native and unfolded states. The

temperature at half transition, T1/2, was 59.7�C for the wild-

type and 56.4�C for the Trp variant, close to previously re-

ported values (19,21,22). Also, the thermodynamic parameters

FIGURE 2 Fluorescence emission spectra and thermal transition curves

of RNase A. (A) Wild-type protein. (B) Y115W variant. Spectra under native

and unfolded conditions are represented as solid and dashed lines, respec-

tively. Protein concentration was 0.1 mg ml�1 in sodium acetate buffer,

50 mM, pH 5.0. (Insets) Temperature-induced unfolding curves. Solid lines

are nonlinear least-squares fits based on a two-state model (Eq. 1).
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deduced from the reversible transition (see Table 1) of

Y115W were similar to those of the wild-type protein.

Bi-directional T-jump induced kinetics

T-jumps were conducted in both directions over the whole

range of the spectral transition. The T-jumps were of different

magnitude, starting at the same temperature and reaching

different final temperatures. Fig. 3, A and B, illustrates typical

kinetic traces of Y115W observed after heating and cooling

T-jumps. The kinetics resulted in significant fluorescence

changes, matching the equilibrium measurements of Fig. 2.

The kinetic traces for both heating and cooling T-jumps were

monoexponential for wild-type and biexponential for

Y115W RNase A. The amplitude of the rapid phase corre-

sponded to ;20% of the total signal change.

The Arrhenius plots of kobs, shown in Fig. 4, are composed

on the left side (higher temperatures) of heating T-jump ex-

periments, and on the right side (lower temperatures) of

cooling T-jump experiments. Taken together, the Arrhenius

plots appear to be bent upward. It is most striking that for

Y115W, the upward curvature resulted in an acceleration of

the fast phase at lower temperatures. For the wild-type pro-

tein, heating and cooling T-jumps appear to result in very

similar rate constants. For the Y115W variant, small differ-

ences are observed for the kobs values recorded in heating and

cooling T-jumps (Table 2).

Independence of kobs on T-jump magnitude

How are these experiment-dependent differences in kobs

values to be explained? Are the differences in kobs due to

different directions of T-jump? Or are they due to different

jump magnitude (DT)? Indeed, in our experimental approach,

the different final temperatures were reached by T-jumps of

different magnitude, as the starting temperature was held

constant for all jumps in one direction. To be able to choose

between these two explanations, two other series of experi-

ments were carried out, using the Y115W variant, with an

inverse experimental set-up: we performed T-jumps of dif-

ferent magnitude starting from a different temperature and

reaching the same final temperature. Again, biphasic kinetics

was observed. The resulting kobs values are represented in

Fig. 4 B in the open circles. As a matter of evidence, for

heating T-jumps, the kobs values resulting from different jump

magnitudes are all lying within the same two circles corre-

sponding to the two kinetic phases. These circles coincide

with the curved Arrhenius plot of ln(kobs) obtained by varying

the final temperature (see above). Corresponding results were

obtained for cooling T-jumps. Hence, we conclude that kobs

depends on the direction of the T-jump, and not on its mag-

nitude.

Thermodynamic analysis

Understanding the above results is made possible by ana-

lyzing the properties of the microscopic folding and un-

folding rate constants kf and ku of the reaction. As shown in

Fig. 5, the Arrhenius plots of kf and ku were linear for both the

single phase of the wild-type and the fast and slow phases of

the variant protein. Hence, their thermodynamic activation

parameters were determined by fitting lnkf and lnku ¼ f(1/T)

to Eq. 4. The resulting kinetic activation parameters (Tables

3 and 4) were consistent with the corresponding thermody-

namic parameters (Table 1), determined under equilibrium

conditions. As a common feature, the slopes of kf ¼ f(1/T)

were close to zero or positive (DH# , 0), and those of ku ¼
f(1/T) were negative (DH# . 0). Consistent with Eq. 3, their

TABLE 1 Thermodynamic parameters of wild-type RNase A

and its Y115W variant calculated from temperature-induced

unfolding curves at pH 5.0

Protein

DS

(KJ mol�1 K�1)*

DH

(KJ mol�1)*

T1/2

(�C)y
DGU40�C

(KJ mol�1)y

Wild-type 1.46 (0.29) 484 (97) 59.7 28.7

Y115W 1.53 (0.14) 505 (47) 56.4 25.2

Values in parentheses are the standard errors of the data.

*The change in entropy and enthalpy was calculated by fitting the equi-

librium fluorescence intensity profiles to Eq. 1.
yThe change in free energy was calculated using the fitted values DS and DH.

FIGURE 3 T-jump induced unfolding/folding relaxation kinetics of

RNase A Y115W. (A) Heating T-jumps started from 45�C. They reached

49, 51, 53, 55, 57, 59, 61, and 63�C. (B) Cooling T-jumps started from 63�C.

They reached 59, 57, 55, 53, 51, 49, 47, and 45�C. Solution conditions:

Y115W at 0.05 mg ml�1 in sodium acetate buffer, 50 mM, pH 5.0.
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crossing over took place at the half-transition temperature, T1/2,

where KT ¼ 1.

As shown in Fig. 5 and Tables 2 and 3, the kinetic pa-

rameters (individual rate constants as well as thermodynamic

activation parameters) of wild-type RNase A did not signif-

icantly depend on the direction of the temperature jumps. In

contrast, small but significant differences between the Ar-

rhenius plots of kf and ku of the slow phase of Y115W variant

were detected as a function of the direction of the T-jump

(Fig. 6). The differences between heating and cooling T-jumps

is also apparent when comparing the corresponding activa-

tion enthalpies, DH#, and entropies, DS#, in Table 4. For in-

stance, the values of DH# of kf of the slow phase were�72 6

8 and �5 6 4 KJ mol�1 in heating and cooling T-jumps,

respectively.

DISCUSSION

Thermodynamic parameters of the kinetic
transition state

The exponential character of all kinetic steps justified their

analysis within transition state theory. The free energy bar-

rier, DG#, of a kinetic transition state contains an enthalpic

(DH#) and an entropic component (DS#). Determining these

components, especially DS#, is dependent on the preexpo-

nential factor g in Eq. 6 (23). In the classical Eyring for-

malism (Eq. 5), g corresponds to kBT/h. In the high-friction

region of the Kramers formalism, g takes the form of a vis-

cosity-corrected characteristic frequency, n, of diffusional

motion over the energy barrier (Eq. 4) (24). For protein

folding, depending on size and topology, different values of n

have been suggested, ranging from 0.1 3 106 to 50 3 106 s�1

(25–28). Here, we used a n-value of 106 s�1 (1 ms�1) which

appears to be accepted as a reasonable consensus (29,30):

FIGURE 4 Temperature dependence of the measured rate constant (kobs).

kobs was determined from heating (triangles) and cooling (inverted trian-
gles) T-jumps, for wild-type RNase A (A) and its Y115W variant (B). For the

latter, a fast (open triangles) and a slow (solid triangles) kinetic phase were

observed. kobs obtained from heating and cooling T-jumps of different

magnitude (8, 15, and 22�C), but reaching the same final temperature, are

represented as horizontal traits inside circles.

TABLE 2 Measured rate constants (kobs) for the

temperature-induced folding and unfolding reaction of

wild-type RNase A and its Y115W variant at pH 5.0

kobs (s�1) at 56�C

Protein Heating T-jumps Cooling T-jumps

Wild-type 0.16 0.15

Y115W* 0.22/1.99 0.29/2.19

*The Y115W variant was observed in two kinetic phases.

FIGURE 5 Temperature dependence of the individual rate constants (kf,

ku). (A) kf (open symbols) and ku (solid symbols) determined from heating

(triangles) and cooling (inverted triangles) T-jumps. The protein was wild-

type RNase A. (B) kf (open symbols) and ku (solid symbols) for the fast

(circles) and slow (squares) kinetic phases determined from cooling

T-jumps. The protein was the RNase A variant Y115W.
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k ¼ gexpð�DG
#
=RTÞ (6)

The Kramers type analysis appears to be better suited for

protein reactions in a viscous solvent than the Eyring

formalism, which had been devised for chemical reactions

in the gas phase. However, for the sake of comparability of

the activation parameters reported here with data in the

literature, we undertook in parallel an Eyring-type analysis.

Although this affected the activation parameters only a little,

as shown in Table 3, since g and DG# cannot be determined

independently, the absolute values of DH# and DS# should be

considered cautiously.

Another characteristic of the transition state is its heat

capacity. However, the linearity of the Arrhenius plots indi-

cated that the contribution of DC#
p could be neglected, at least

in the limited temperature range (45–65�C) of our experi-

ments. This is in contradiction to the reaction heat capacity,

DCp, which had been determined by calorimetry as 5.3 KJ

mol�1 K�1 (31), suggesting a nonzero value of DC#
p. How-

ever, the introduction of DC#
p as an additional fitting param-

eter in Eq. 4 resulted in unreliable fitting results because of

strong parameter dependencies. Therefore, in this analysis,

an eventual contribution of DC#
p was not taken into account.

Within the above-mentioned constraint, Fig. 7 offers a

complete thermodynamic and kinetic description of the

folding and unfolding of wild-type RNase A and its Y115W

variant. As summarized in Table 3, heating and cooling

T-jump-induced kinetics proceed by a common TS (identical

DH# and DS# values) for the wild-type protein. For the

Y115W variant, the energetic level of the TS is split into three

distinct levels, as characterized by their activation enthalpies

and entropies (Table 4). TS1 and TS2 occur after cooling

(inducing folding) and heating (inducing unfolding) T-jumps,

respectively. They reflect the slow kinetic phase. TS3 (of the

fast phase) is identical in heating and cooling T-jumps.

Hence, depending on the kinetic phase and the direction of

the T-jump, the variant protein may adopt three different

kinetic TS, distinguished by their activation enthalpy, DH#,

and activation entropy, DS#. This suggests the existence of

three different kinetic pathways.

TABLE 3 Activation parameters for the temperature-induced

folding and unfolding reaction of wild-type RNase A at pH 5.0

Heating T-jumps

kindividual DH# (KJ mol�1) DS# (KJ mol�1 K�1)

kf �44 (8) �0.27 (0.02)

[�42 (5)] [�0.39 (0.02)]

ku 440 (8) 1.19 (0.02)

[442 (5)] [1.07 (0.02)]

Cooling T-jumps

kindividual DH# (KJ mol�1) DS# (KJ mol�1 K�1)

kf �53 (5) �0.29 (0.01)

[�33 (8)] [�0.36 (0.02)]

ku 431 (5) 1.16 (0.01)

[451 (8)] [1.09 (0.02)]

A viscosity corrected preexponential factor of 106 s�1 was used within

the Kramers transition state formalism. Values enclosed in square brackets

are calculated using the Eyring formalism. The standard errors of the data

are indicated in parentheses.

FIGURE 6 Path-dependent Arrhenius plots. kf (open symbols) and ku

(solid symbols) were determined from heating (circles) and cooling

(squares) T-jumps. The protein was the RNase A variant Y115W. Only

the slow kinetic phase is shown.

FIGURE 7 Kinetic transition states of the temperature-induced folding/

unfolding reaction of RNase A. Changes of entropy (A) and enthalpy (B)

were determined from the temperature dependence of kf and ku of both

heating and cooling T-jumps of wild-type RNase A (left) and its Y115W

variant (right). The direction of the T-jumps is indicated by arrows.

Thermodynamic parameters of the folded state were set to zero. U and N

denote the unfolded and native states, respectively. # represents the TS

ensemble.
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Kinetic reaction model

On the basis of extensive stopped-flow studies (32–40), the

following sequence of events has been described: 1), a fast

phase monitoring purely conformational refolding/unfolding

processes; and 2), several slower phases monitoring strictly

local changes coupled to cis-trans isomerization of its three

‘‘essential’’ Pro residues (Pro93, Pro114, and Pro117) (33). The

fast folding/unfolding of the three-dimensional structure

appears to be completed, under our experimental conditions

of pH and temperature, within the dead time of the stopped-

flow apparatus (3.7 ms). Indeed, the rate constant of this

phase is 93 s�1 at 20�C (41). Hence, because the isomeric

state of the protein is essentially unchanging on the timescale

of such a rapid cooperative unfolding/folding transition, we

interpret our fluorescence-detected kinetics as the subsequent

local changes in the environment of the Tyr (wild-type pro-

tein) or Trp (Y115W variant) residues, due to changes in the

C-terminal b-hairpin structure of RNase A and cis-trans
isomerization of the nearby X-Pro peptide bonds.

A possible reaction model is shown in Fig. 8. To explain

the relaxation profiles obtained after heating T-jumps, we

hypothesize the existence of one folded state, Fcis (containing

native X-Pro peptide groups), and three different states ob-

tained after conformational unfolding, denoted Ucis, U9cis, and

U9trans containing the native (cis) or nonnative (trans) isomer.

We use the symbol U9 to designate species arising after a

local conformational change of the region around Pro114.

Stricto sensu, these states should not be considered as com-

pletely unfolded because thermal-unfolded RNase A retains

some secondary structure (42–48). However, the residual

structure in the unfolded state appears to be limited and of

low stability. Therefore, and for simplicity, these states are

denoted ‘‘unfolded’’ hereafter. Initially, at low temperature,

all the protein (either wild-type protein or Y115W variant) is

in state Fcis. The heating T-jump provokes the protein to relax

in a very fast phase, not observed under our experimental

conditions, from Fcis to Ucis. The reaction proceeds further,

allowing the protein to occupy first U9cis, and subsequently

U9trans, with the former reaction ;7.5 times faster (at 56�C)

than the latter. For wild-type protein, only the slow kinetic

phase from U9cis to U9trans is observed.

In cooling T-jumps, most of the protein (;80–90%) is

initially, at high temperature, in the U9trans state. A minor

amount (;10–20%) is in state U9cis. From each state, the

protein relaxes in a very fast phase, not observed under our

experimental conditions, to a folded state presenting the same

X-Pro isomers as the corresponding unfolded state. There-

fore, the folded states are denoted F9trans and F9cis, respec-

tively. The protein relaxes again from F9trans to F9cis, and from

F9cis to Fcis, giving rise to a major slow phase and a minor fast

phase, respectively, with the former reaction;9 times slower

(at 56�C) than the latter. Again, for wild-type protein, only

the slow phase from F9trans to F9cis is observed.

A plausible explanation for the biphasic relaxation profiles

in the variant protein is that the sole Trp residue reports both

on the local conformation of the loop around Pro114 and on

the isomeric state of this Pro residue. As a result, each process

gives rise to an individual kinetic phase. It would have been

interesting to shorten the incubation time in the storage lines

(Fig. 1, 4) before each shot to start mixing from differently

populated isomeric species (such as in ‘‘double jumps’’ in the

presence of chemical denaturants (35,38,49–51). However,

this would require the development of a premixing T-jump

device, which is beyond the scope of this work.

Identity of the slow phase

The rate constants of the major slow phase observed for the

Y115W variant (for the folding and unfolding reactions) are

TABLE 4 Activation parameters for the temperature-induced

folding and unfolding reaction of RNase A Y115W at pH 5.0

Heating T-jumps

kindividual DH# (KJ mol�1) DS# (KJ mol�1 K�1)

TS3 kf (fast) �141 (13) �0.54 (0.04)

ku (fast) 361 (13) 0.98 (0.04)

TS2 kf (slow) �72 (8) �0.35 (0.02)

ku (slow) 433 (8) 1.18 (0.02)

Cooling T-jumps

kindividual DH# (KJ mol�1) DS# (KJ mol�1 K�1)

TS3 kf (fast) �142 (6) �0.55 (0.02)

ku (fast) 363 (6) 0.99 (0.02)

TS1 kf (slow) �5 (4) �0.15 (0.01)

ku (slow) 500 (4) 1.39 (0.01)

A viscosity corrected pre-exponential factor of 106 s�1 was used within the

Kramers transition state formalism. The standard errors of the data are

indicated in parentheses.

FIGURE 8 Kinetic reaction model for the temperature-triggered folding/

unfolding of RNase A. The shaded area indicates the fast kinetic phases

observed only for the Y115W variant. Solid and shaded arrows denote

heating and cooling T-jumps, respectively. Undetectable kinetic phases

corresponding to conformational unfolding/folding are denoted by the black

vertical shape at left.
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similar to the monophasic relaxation kinetics we have ob-

served for wild-type protein and, after correction for the

corresponding temperature dependence of a given reaction,

with those described in the literature. According to Juminaga

et al. (37), this slow kinetics of the wild-type protein arises

from Tyr92 and Tyr115 reporting on the cis-trans isomeri-

zation of Pro93 and Pro114, respectively. However, their

respective contribution can be distinguished only by site-

directed mutagenesis.

The transition states of the slow phase of the Y115W

variant (TS1 and TS2) are different from that of the wild-type

protein. Since Trp115 reports on the isomerization state of

Pro114, rather than on that of Pro93, this suggests that the

activation parameters for the isomerization of Pro114 under

folding conditions are different from those observed under

unfolding conditions. Such a particular behavior is in

agreement with the unusual reduced activation energy of the

X-Pro114 peptide group under folding conditions (32), and

extends the results previously reported by Cook et al. (52),

who found, by an independent method, that Pro isomeriza-

tion is speeded up under folding conditions and that a spec-

trally detectable folding intermediate at low temperatures

(0–10�C) is present before Pro isomerization. It is likely that

the quasinative intermediate described in this previous work,

named IN, corresponds to the F9trans species presenting non-

native (trans) isomers we observed after cooling T-jumps.

The fact that TS2 for the Y115W variant is identical to the

TS of the wild-type protein indicates that under unfolding

conditions, the activation parameters for the isomerization of

Pro114 are similar to those for isomerization of Pro93. They

are, however, dissimilar under folding conditions. Further-

more, in heating T-jumps, the value of DH# of kf of the slow

phase was �72 6 8 KJ mol�1 (within the constraint of n ¼
106 s�1), rather similar to the activation energy at 25�C of

prolyl isomerization, which has been determined as �84 KJ

mol�1 (53). These comparable values are a further argument

in favor of the hypothesis that the slow phase reports on

X-Pro isomerization.

Identity of the fast phase

The fast processes for both heating and cooling T-jumps, with

observed rate constants of ;2 s�1 at 56�C, merely detected

using the variant protein, are in fact slower than the global

folding/unfolding processes (41), but much faster than the

major slow phase (;0.2–0.3 s�1). We argue that they report

on the local reorganization of the C-terminal b-hairpin of

RNase A, which is stabilized mainly by highly hydrophobic

interactions. This fast phase follows the global conforma-

tional unfolding/folding process.

Although it has been found previously that the reporting of

Tyr115 is very local, and that, accordingly, only the isomeri-

zation of X-Pro114 is observed (18), the fast phase detected

after replacement of Tyr115 by Trp is comparable to the pre-

viously observed ‘‘medium’’ phase of refolding obtained

from chemically induced unfolded RNase A (41). That phase

may be assigned to a conformation in which both Pro93 and

Pro114 are native cis and Pro117 is nonnative cis (54). Thus, an

alternative explanation can be proposed that receives further

support by the analysis of the amplitude of the fast kinetic

phase. The fact that this phase comprises ;10–20% of the

refolding/unfolding amplitude suggests that it reflects species

that are only little populated, like those arising from a non-

native isomer of Pro117 (18). A plausible explanation for the

observation of such a phase in the variant protein can be

proposed. Since Pro117 is more distant from Tyr115 than

Pro114, its isomerization signal is undersized in the wild-type

protein and, consequently, may not be detectable. By contrast,

the Y115W amino acid replacement makes readily apparent

the contribution of Pro117 isomerization through Trp115.

Acceleration of the folding rate at
low temperature

The temperature dependence of kf of the fast phase, which

accelerates when the temperature is lowered, is intriguing and

seems to be in contradiction to the generally observed tem-

perature dependence of kinetic rate constants of biochemical

reactions. However, protein folding kinetics are more complex

than ‘‘ordinary’’ biochemical reactions. Indeed, our results

show clearly that this ‘‘unusual’’ behavior is due to a negative

activation enthalpy. The overall energetic barrier of the acti-

vation free energy, DG#, is maintained by a compensation of

DH# with a strongly negative TDS# term. This entropic acti-

vation barrier for folding is consistent with studies of other

proteins (55–57). The significant negative value of both acti-

vation parameters (DH# and DS#) for the folding rate suggests

that the TS remains hydrated while new intermolecular inter-

actions are established. Moreover, it implies that the U-to-TS3

step is characterized by a reduction in chain entropy, sug-

gesting a more ordered and structured activated complex

compared to the U state. However, although the observation of

a kinetic phase becoming faster at lower temperatures can be

thermodynamically explained, it nevertheless calls for an un-

derstanding on the molecular level. As pointed out by Dobson

(56), an explanation can be gleaned from theoretical studies,

taking into account a rugged energy landscape (58). Indeed,

Karplus (59) suggested, based on a cubic lattice model, that the

protein folding rate at high temperature slows down, since the

accessible configurational space increases and a longer search

is needed to reach the TS. This situation seems to apply to kf of

the fast phase. Accordingly, the cubic lattice model simula-

tions constitute a further argument in favor of the fast phase

reflecting a change in conformational order (the ordering of the

C-terminal b-hairpin).

Dissimilar folding and unfolding routes

This is, to our knowledge, the first report about protein re-

laxation kinetics induced by both heating and cooling

Heating and Cooling T-Jumps 4063
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T-jumps. The thermodynamic activation parameters of the

fast kinetic phase of Y115W variant (probably a conforma-

tional change of the C-terminal b-hairpin domain) are the

same, whether determined by cooling or heating T-jumps.

This path independence is also observed for the wild-type

protein. This may be important information for researchers

who do not have the capability to carry out T-jumps in both

directions. However, the results of the slow kinetic phase

of the Y115W variant, attributed to Pro isomerization, are

intriguing, as they reveal a path dependence of the kinetics

associated with protein folding and unfolding recent pres-

sure-jump experiments had provided a first evidence of

path-dependent RNase A unfolding (60). However, the high-

pressure kinetic data do not seem to be directly comparable to

the present results. This could indicate that pressure and

temperature induce different folding/unfolding routes. An-

other type of path-dependent protein unfolding kinetics was

previously discussed by Leeson et al., who used heating

T-jumps of different amplitudes to induce unfolding of the

major cold shock protein of Escherichia coli (5). The authors

of this elegant article deplored the impossibility of carrying

cooling T-jumps.

The ability to conduct cooling T-jumps is now made

possible by the mT-jump technique. This novel technical

achievement opens a whole field of possible investigations of

protein relaxation kinetics in the folding direction, in the

absence of chemical denaturants. The only other cooling

jump device developed for studying biochemical reactions

is the ‘‘rapid-freeze’’ apparatus (61). However, the latter

technique does not allow the study of relaxation kinetics.

Instead, it is used to stabilize reaction intermediates in view

of their further structural analysis (62). The present path

dependence of folding and unfolding relaxation kinetics in-

duced by heating and cooling T-jumps may be considered as

an experimental proof of a more than one-dimensional

folding/unfolding energy surface. A further challenge will be

to apply this new technical possibility to compare the folding

and unfolding paths of other proteins.
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